

Lecture Notes in Computer Science 3377
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bart Goethals Arno Siebes (Eds.)

Knowledge Discovery
in Inductive Databases

Third International Workshop, KDID 2004
Pisa, Italy, September 20, 2004
Revised Selected and Invited Papers

13

Volume Editors

Bart Goethals
University of Antwerp, Department of Mathematics and Computer Science
Middelheimlaan 1, 2020 Antwerp, Belgium
E-mail: bart.goethals@ua.ac.be

Arno Siebes
Utrecht University, Institute of Information and Computing Sciences
PO Box 80.089, 3508TB Utrecht, The Netherlands
E-mail: arno.siebes@cs.uu.nl

Library of Congress Control Number: 2005921108

CR Subject Classification (1998): H.2, I.2

ISSN 0302-9743
ISBN 3-540-25082-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11400059 06/3142 5 4 3 2 1 0

Preface

The 3rd International Workshop on Knowledge Discovery in Inductive Databases
(KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th
European Conference on Machine Learning and the 8th European Conference
on Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD
2004).

Ever since the start of the field of data mining, it has been realized that the
knowledge discovery and data mining process should be integrated into database
technology. This idea has been formalized in the concept of inductive databases,
introduced by Imielinski and Mannila (CACM 1996, 39(11)).

In general, an inductive database is a database that supports data mining
and the knowledge discovery process in a natural and elegant way. In addition to
the usual data, it also contains inductive generalizations (e.g., patterns, models)
extracted from the data. Within this framework, knowledge discovery is an in-
teractive process in which users can query the inductive database to gain insight
to the data and the patterns and models within that data.

Despite many recent developments, there still exists a pressing need to un-
derstand the central issues in inductive databases. This workshop aimed to bring
together database and data mining researchers and practitioners who are inter-
ested in the numerous challenges that inductive databases offers.

This workshop followed the previous two workshops: KDID 2002 held in
Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia.

The scientific program of the workshop included 9 papers, selected out of 23
submissions, and an invited talk by Sunita Sarawagi. During the workshop, only
informal proceedings were distributed. The papers in this volume were revised
by the authors based on the comments from the refereeing stage and ensuing
discussions during the workshop, and were subjected to a final acceptance by
the Program Committee.

We wish to thank the invited speaker, all the authors who submitted their
papers to the workshop, the Program Committee members for their help in the
reviewing process, and the ECML/PKDD Organization Committee for their help
and local organization.

December 2004 Bart Goethals
Arno Siebes

VI Preface

Program Chairs

Bart Goethals
Helsinki Institute for Information Technology – Basic Research Unit
Department of Computer Science
University of Helsinki
Finland
http://www.cs.helsinki.fi/bart.goethals/

Arno Siebes
Institute of Information and Computing Sciences
Utrecht University
The Netherlands
http://www.cs.uu.nl/staff/siebes.html

Program Committee

Roberto Bayardo, IBM Almaden, USA
Francesco Bonchi, ISTI-CNR, Italy
Jean-François Boulicaut, INSA Lyon, France
Toon Calders, University of Antwerp, Belgium
Luc De Raedt, Albert-Ludwigs-Universitaet Freiburg, Germany
Saso Dzeroski, Jozef Stefan Institute, Slovenia
Minos N. Garofalakis, Bell Labs, USA
Johannes Gehrke, Cornell University, USA
Mika Klemettinen, Nokia, Finland
Heikki Mannila, HIIT-BRU, University of Helsinki,

Helsinki University of Technology, Finland
Rosa Meo, University of Turin, Italy
Ryszard S. Michalski, George Mason University, USA
Taneli Mielikäinen, HIIT-BRU, University of Helsinki, Finland
Mohammed Zaki, Rensselaer Polytechnic Institute, USA

Table of Contents

Invited Paper

Models and Indices for Integrating Unstructured Data with a Relational
Database

Sunita Sarawagi . 1

Contributed Papers

Constraint Relaxations for Discovering Unknown Sequential Patterns
Cláudia Antunes, Arlindo L. Oliveira . 11

Mining Formal Concepts with a Bounded Number of Exceptions from
Transactional Data

Jérémy Besson, Céline Robardet, Jean-François Boulicaut 33

Theoretical Bounds on the Size of Condensed Representations
Nele Dexters, Toon Calders . 46

Mining Interesting XML-Enabled Association Rules with Templates
Ling Feng, Tharam Dillon . 66

Database Transposition for Constrained (Closed) Pattern Mining
Baptiste Jeudy, François Rioult . 89

An Efficient Algorithm for Mining String Databases Under Constraints
Sau Dan Lee, Luc De Raedt . 108

An Automata Approach to Pattern Collections
Taneli Mielikäinen . 130

Implicit Enumeration of Patterns
Taneli Mielikäinen . 150

Condensed Representation of EPs and Patterns Quantified by
Frequency-Based Measures

Arnaud Soulet, Bruno Crémilleux, François Rioult 173

Author Index . 191

Models and Indices for Integrating Unstructured
Data with a Relational Database

Sunita Sarawagi

IIT Bombay
sunita@iitb.ac.in

Abstract. Database systems are islands of structure in a sea of un-
structured data sources. Several real-world applications now need to cre-
ate bridges for smooth integration of semi-structured sources with exist-
ing structured databases for seamless querying. This integration requires
extracting structured column values from the unstructured source and
mapping them to known database entities. Existing methods of data in-
tegration do not effectively exploit the wealth of information available in
multi-relational entities.

We present statistical models for co-reference resolution and informa-
tion extraction in a database setting. We then go over the performance
challenges of training and applying these models efficiently over very
large databases. This requires us to break open a black box statistical
model and extract predicates over indexable attributes of the database.
We show how to extract such predicates for several classification models,
including naive Bayes classifiers and support vector machines. We ex-
tend these indexing methods for supporting similarity predicates needed
during data integration.

1 Introduction

Current research in the area of database mining integration is about finding pat-
terns in data residing within a single structured data box. Most data around us is
unstructured but is largely ignored in the data analysis phase. The only effective
way to exploit this abundance of unstructured data is to map it the structured
schema implicit in a database system. Not surprisingly, a lot of excitement in re-
cent learning and KDD community has been on dealing with partially structured
or semi-structured data. Although, in sheer volume structured data is small, it
is precious data that captures the language in which data is to be analyzed.
Ideally, we would like to be able to map the huge insanity of unstructuredness
in terms of this database, and perform our querying and mining the same way.

The KDID community has a lot to offer in this quest. We need to understand
and build models to statistically describe and recognize the entities stored in the
database. Given the huge volume of unstructured data involved, we have to rely
extensively on indexed access to both the database and the unstructured world.

Here are some examples of scenarios where a database and unstructured
sources meet.

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Sarawagi

Consider a company selling electronics products that maintains a table of its
products with their features as column names. Companies routinely monitor the
web to find competing companies offering products with similar features and to
find reviews of newly introduced features. Ideally, they would like to map these
unstructured webpages to additional rows and columns in their existing products
database.

Another interesting area where there is strong need for integrating unstruc-
tured data with a structured database is personal information management sys-
tems. These systems organize all information about an individual in a structured
fixed-schema database. For example, the PIM would contain structured entries
for documents along with their titles, authors and citations organized as a bibtex
entry, people including colleagues and students along with their contact infor-
mation, projects with topics, members and start dates. Links between the struc-
tured entities, like members pointing to people and authors pointing to people,
establish relationships between the entities. Such an interlinked database opens
up the possibility of a query interface significantly richer than has been possible
through grep on file-based unstructured desktops.

Given the legacy of existing file-based information systems, the creation of
such a database will not happen naturally. Separate data integration processes
are required to map unstructured data as it gets created as files into the existing
structured database. For example, as a user downloads a paper he would like the
bibtex entry of the paper to get automatically extracted and added in his PIM.
When a resume appears in an email, he might want to link them to relevant
projects.

This is a difficult problem involving several stages of information gathering,
extraction and matching. We are very far from this goal. In this article, I will
go over the pieces of the puzzle that are relevant and being solved today. We
explicitly limit the scope to the following concrete problem. We are given a large
multi-relational database and an optional small labeled unstructured set. Our
goal is to perform the following on an input unstructured string:

– Extract attributes corresponding to columns names in the database and as-
sign relationships through foreign keys when attributes span multiple linked
tables. We call this the information extraction problem.

– Map the extracted entities to existing entries in the database if they match,
otherwise, create new entries. We call this the matching problem.

On each of these subproblems a lot of work has already been done. These
span a number of approaches starting from manually-tuned set of scripts to plain
lookup-based methods to a bewildering set of pattern learning-based methods.
However, there is still a need to develop unified solutions that can exploit existing
networked structured databases along with labeled unstructured data. We would
like a proposed solution to have the following properties:

– Automated, domain-independent, database-driven: Our goal is to design a
system that does the integration in as domain-independent and automated a
manner as possible. Ideally, the database system should be the only domain-

Models and Indices for Integrating Unstructured Data 3

specific component of the whole system. We should exploit it in the most
effective way possible.

– Unified learning-based model for all integration tasks: Instead of building
one classifier/strategy for recognizing year fields and another one for author-
names and a third one for geography, we want a unified model that recognizes
all of these through a single global model.

– Probabilistic output for post-querying and mining: We prefer a model that
can output probabilities with each extraction/matching it outputs. Integra-
tion is not a goal by itself. It is often followed by large aggregate queries and
soft-results with probabilities will provide better answers to these queries.

– Exploit all possible clues for extraction/matching in a simple combined
framework: Real-life extraction problems will need to exploit a rich and
diverse set of clues spanning, position, font, content, context, match in dic-
tionary, part-of-speech, etc. We want an extensible model where it is easy to
add such clues in a combined framework.

– Efficient, incremental training and inferencing: Finally we would like the
system and the trained models to continuously evolve with the addition of
new data and user corrections.

Conditional Random Fields [6, 11], a recently proposed form of undirected
graphical models, is holding great promise in taking us toward this goal. I will
present an overview of CRFs and later concentrate on how they apply for ex-
traction and matching tasks.

2 Conditional Random Fields

We are given x a complex object like a record or a sequence or a graph for which
we need to make n interdependent predictions y = y1 . . . yn. During normal
classification we predict one variable. Here the goal is to predict n variables that
are not all independent. The dependency between them is expressed as a graph
G where nodes denote the random variable y and an edge between two nodes yi

and yj denotes that these variables are directly dependent on each other. Any
other pair of nodes yi and yk not connected by a direct edge are independent of
each other given the rest of the nodes in the graph. This graph allows the joint
probability of y (given x) to be factorized using simpler terms as:

Pr(y|x) =
Φ(y,x)
Z(x)

=
∏

c Φc(yc,x, c)
Z(x)

This provides a discriminative model of y in terms of x. The c terms refer to
cliques in the graph. For each clique a potential function captures the dependency
between variable yc in the clique. The denominator Z(x) is a normalizer and is
equal to

∑
y′ Φ(y′,x). In exponential models, the potential function takes the

form:
Φc(yc,x, c) = exp(

∑
m

wmfm(yc,x, c))

4 S. Sarawagi

The terms within the exponent are a weighted sum of features that capture
various properties of the variables yc,x, c. Features can take any numerical value
and are not required to be independent of one other. This is one of the strengths
of the exponential models because it allows a user to exploit several properties of
data that might provide clues to its label without worrying about the relationship
among them. The wm terms are the parameters of the model and are learnt
during training. We will use W to denote the vector of all wms.

The inference problem for a CRF is defined as follows: given W and x, find
the best labels, y : y1, y2 . . . , yn

argmaxy Pr(y|x) = argmaxy

∑
c

W.f(yc,x, c)

In general it is too expensive to enumerate all possible values of each of the ys
and pick the best. However, the limited dependency among variables can be ex-
ploited to significantly reduce this complexity. The message passing algorithm is
a popular method of solving various kinds of inference problems on such graphs.
For a graph, without cycles it can find the best y and/or various marginals of
the distribution in at most two passes over the graph. In a graph with cycles
it is used to provide an approximation. An excellent survey of these techniques
and how they solve the problems of training and inferencing appear in [5].

We will now see how various forms of information extraction and matching
problems can be modeled within this unifying framework of conditional random
fields.

3 Information Extraction(IE)

Traditional models for information extraction take as input labeled unstructured
data and train models that can then extract the labeled fields from unseen
unstructured data. We will review these first. Next, we will see how these can
be extended to exploit an existing large database of structured entities.

3.1 IE Using Only Labeled Unstructured Data

The state of the art methods of IE model extraction as a sequential labeling
problem. Typically, IE models treat the input unstructured text as a sequence
of tokens x = x1 . . . xn which need to be assigned a corresponding sequence of
labels y = y1 . . . yn from a fixed set Y. The label at position i depends only
on its previous label, thus the corresponding dependency graph on the variables
is a chain. For instance, x might be a sequence of words, and y might be a
sequence in {I, O}|x|, where yi = I indicates “word xi is inside a name” and
yi = O indicates the opposite. The simpler chain structure of the graph allows
for more efficient training and inferencing as discussed in [11]. The conditional
form of the CRF models allows us to exploit a variety of useful features without
worrying about whether these overlap or not. For example, we can add features
that capture the following diverse kinds of properties of a word: word ends in

Models and Indices for Integrating Unstructured Data 5

“-ski”, word is capitalized, word is part of a noun phrase, word is under node
X in WordNet, word is in bold font, word is indented, next two words are “and
Associates”, previous label is “Other”.

3.2 IE Using Labeled Data and Structured Databases

We now consider the case where in addition to the labeled data, we have large
databases of entity names. For example, in trying to extract journal names
from citations, we can have access to an existing list of journals in a bibtex
database.

The conditional model provides one easy way to exploit such databases of
entities. Assume we have columns in the database corresponding to different
entity types like people and journals that we wish to extract. We simply add
one additional binary feature for each such column D, fD which is true for
every token that appears in that column of entity names: i.e., for any token
xi, fD(xi) = 1 if xi matches any word of the entity column D and fD(xi) = 0
otherwise. This feature is then treated like any other binary feature, and the
training procedure assigns an appropriate weighting to it relative to the other
features.

The above scheme ignores the fact that entity names consist of multiple
words. A better method of incorporating multi-word entity names was proposed
by Borthwick et al [1]. They propose defining a set of four features, fD.unique,
fD.first, fD.last, and fD.continue. For each token xi the four binary dictionary
features denote, respectively: (1) a match with a one-word dictionary entry, (2)
a match with the first word of a multi-word entry, (3) a match with the last
word of a multi-word entry, or, (4) a match with any other word of an entry. For
example, the token xi=“flintstone” will have feature values fD.unique(xi) = 0,
fD.first(xi) = 0, fD.continue(xi) = 0, and fD.last(xi) = 1 (for the column D
consisting of just two entries: “frederick flintstone” and “barney rubble”.

A major limitation of both of these approaches is that the proposed exact
match features cannot handle abbreviations and misspellings in unstructured
source. For example, a person names column might contain an entry of the
form “Jeffrey Ullman” whereas the unstructured text might have “J. Ullmann”.
This problem can be solved by exploiting state-of-the-art similarity metrics like
edit distance and TF-IDF match [3]. The features now instead of being binary
are real-valued and return the similarity measure with the closest word in a
dictionary.

A second limitation is that single word classification prevents effective use
of multi-word entities in dictionaries. Similarity measures on individual words is
less effective than similarity of a text segment to an entire entry in the dictionary.
We address this limitation by extending CRFs to do semi-markov modeling in-
stead of the usual markov models. In a semi-markov model we classify segments
(consisting of several adjacent words) instead of individual words. The features
are now defined over segments and this allows us to use as features similarity
measures between a segment and the closest entry in the entity column. During
inference, instead of finding a fixed sequence of labels y1 . . . yn we find the best

6 S. Sarawagi

method of segmenting the text and assign labels for each segment. Although,
computationally this appears formidable, we can design efficient dynamic pro-
gramming algorithms as shown in [4] and [9].

Experimental results on five real-life extraction tasks in the presence of large
database of entity names show that the semi-markov models along with the use
of similarity features increase the overall F1 accuracy from 46% to 58%.

We believe that semi-markov models hold great promise in providing effective
use of multi-word databases for IE. More experiments are needed to establish
the usefulness of this approach in a general multi-column setting. An interesting
direction of future work is how existing foreign key/primary key relationships
can be exploited to get even higher accuracies.

4 Entity Matching

We now consider the problem of matching an extracted set of entities to existing
entries in the database. In the general case, an input unstructured record will be
segmented into multiple types of entities. For example, a citation entry can be
segmented into author names, title, journal names, year and volume. The existing
database will typically consist of multiple tables with columns corresponding to
the extracted entities and linked through foreign and primary keys.

4.1 Pair-Wise Single-Attribute Matching

Consider first the specific problem of matching a single extracted entity to a
column of entity names, if it exists and returning “none-of-the-above” if it does
not. Typically, there are several non-trivial variations of an entity name in the
unstructured world. So, it is hard to hand-tune scripts that will take into account
the different variations and match an extracted entity to the right database en-
try. We therefore pursue the learning approach where we design a classifier that
takes as input various similarity measures between a pair of records and returns
a “0” if the records match and a “1” otherwise. This is a straight-forward binary
classification problem where the features are real-valued typically denoting vari-
ous kinds of similarity functions between attributes like Edit distance, Soundex,
N-grams overlap, Jaccard, Jaro-Winkler and Subset match [3]. Thus, we can use
any binary classifier like SVM, decision trees, logistic regression. We use a CRF
with a single variable for later extensibility. Thus, given a record pair (x1x2),
the CRF predicts a y that can take values 0 or 1 as

Pr(y|x1, x2) =
exp(W.F(y, x1, x2))

Z(x1, x2)
(1)

The feature vector F(y, x1, x2) corresponds to various similarity measures
between the records when y = 1.

An important concern about this approach is efficiency. During training we
cannot afford to create pairs of records when the number of records is large.
Typically, we can use some easy filters like only include pairs which have at least

Models and Indices for Integrating Unstructured Data 7

one common n-gram to reduce cost. During prediction too we cannot afford
to explicitly compute the similarity of an input record with each entry in the
database. Later we will discuss how we can index the learnt similarity criteria
for considering only a subset of records with which to match.

4.2 Grouped Entity Resolution

The “match” relation is transitive in the sense that if a record r1 matches with
r2 and r2 matches with r3 than r1 has to match with r3. When the input is a
group of records instead of a single record as in the previous section, the pair-
wise independent classification approach can output predictions that violate the
transitivity property. McCallum and Wellner [7] show how the CRF framework
enables us to form a correlated prediction problem over all input records pairs,
so as to enforce the transitivity constraint.

Assume new the sets of records are not already in the database. Given several
records x=x1, x2, . . . xn, we find n2 predictions, y = yij : 1 ≤ i ≤ n, 1 ≤ j ≤ n
so as to enforce transitivity

Pr(y|x) =
exp(

∑
i,j W.F(yij , xi, xj) +

∑
i,j,k w′.f(yij , yik, yjk))

Z(x)

The value of the feature f(yij , yik, yjk) is set to 0 whenever transitivity con-
straint is preserved otherwise it is set to −∞. This happens when exactly two
of the three arguments are set to 1.

The above formulation reduces to a graph partitioning problem whose exact
solution is hard. However, it is possible to get good approximate solutions as
discussed in [7]. The authors show that compared to simple pair-wise classifi-
cation, the combined model increases the accuracy of two noun co-referencing
tasks from 91.6% to 94% and 88.9% to 91.6% respectively.

4.3 Grouped Multi-attribute Entities

In the general case, the entity groups to be matched will each consist of mul-
tiple attributes. Grouped matching of multi-attribute records presents another
mechanism of increasing accuracy by exploiting correlated predictions using a
graphical model like CRF as discussed in [8]. Consider the four citation records
below (from [8]).

Record Title Author Venue
b1 Record Linkage using CRFs Linda Stewart KDD-2003
b2 Record Linkage using CRFs Linda Stewart 9th SIGKDD
b3 Learning Boolean Formulas Bill Johnson KDD-2003
b4 Learning of Boolean Expressions William Johnson” 9th SIGKDD

The similarity between b1 and b2 could be easy to establish because of the
high similarity of the title and author fields. This in turn forces the venues
“KDD-2003”, “9th SIGKDD” to be called duplicates even though intrinsic tex-
tual similarity is not too high. These same venue names are shared between b3

8 S. Sarawagi

and b4 and now it might be easy to call b3 and b4 duplicates in spite of not
such high textual similarity between the author and title fields.

Such forms of shared inferencing are easy to exploit in the CRF framework.
Associate variables for predictions for each distinct attribute pair and each record
pair. In the formulation below, the first set of terms express the dependency
between record pair predictions and predictions of attributes that they contain.
The second set of terms exploits the text of the attribute pairs to predict if they
are the same entity or not.

Pr(y|x) =
exp(

∑
i,j

∑
k W.F(yij , A

k
ij) + W′.F′(Ak

ij , xi.a
k, xj .a

k))
Z(x)

The main concern about such formulations is the computation overhead and
[8] presents some mechanisms for addressing them using graph partitioning al-
gorithms. The combined model is shown to increase the match accuracy of a
collection of citations from 84% to 87% ([8]).

5 Indices for Efficient Inferencing

For both the extraction and matching tasks, efficient processing will require that
we break open the classification function learnt by a CRF and define appropriate
indices so that we can efficiently select only that data subset that will satisfy a
certain prediction. All aspects of this problem are not yet solved.

We will next consider a specific matching scenario of Section 4.1 where it is
possible to design indices to reduce the number of entries in the database with
which a query record is compared.

After the model in Equation 1 is trained we have a weight vector W for each
feature in the vector F(y, x1, x2). When applying this model during inferencing,
we are given a string xq and our goal is to find the xj-s from the database with
the largest value of W · F(1, xq, xj). We claim that for most common similarity
features, this function can be factorized as

W · F(1, xq, xj) = w1(xq)f1(xj), . . . wr(xq)fr(xj).

Consider an example: The original function is:

W · F(1, xq, xj) = 0.3 tf − idf(xj , xq) + 0.4 common-words(xj , xq)

This can be rewritten as:∑
word e∈xq

(0.3 weight(e, xq)weight(e, xj) + 0.4[[e ∈ xj]])

The factorized form above allows us to index the data for efficiently finding
the best match for a given query record as follows. We create inverted index
for each of the r features fi. Thus, for each feature we keep the list of (record

Models and Indices for Integrating Unstructured Data 9

identifiers, feature-value) pair for all records that have a non-zero value of the
feature. The query records assigns a weight for a subset of these features. We
create a weighted merge of these lists to find the record identifiers that will have
the largest value of the dot-product. A number of techniques have been proposed
in the database or IR literature to efficiently perform this merge and find the
top-k matching records without performing the full merge. These details can be
found in [10, 2, 12].

A number of interesting problems in designing indices for pulling parts that
are likely to contain entities of a given type still remain. We can expect to see
lot of work in this area in the future.

6 Conclusion

In this article we motivated the research area of developing techniques for infor-
mation extraction and integration by exploiting existing large databases. Recent
advances in graphical models provide a unified framework for structure extrac-
tion and reference resolution. This is a call to researchers in the KDD community
to investigate the problems of developing practical models for these problems and
providing methods for efficient training and inferencing.

References

1. A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. Exploiting diverse
knowledge sources via maximum entropy in named entity recognition. In Sixth
Workshop on Very Large Corpora New Brunswick, New Jersey. Association for
Computational Linguistics., 1998.

2. Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

3. William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03), 2003. To appear.

4. William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named en-
tity extraction: Combining semi-markov extraction processes and data integration
methods. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004. To appear.

5. M. I. Jordan. Graphical models. Statistical Science (Special Issue on Bayesian
Statistics), 19:140–155, 2004.

6. John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceed-
ings of the International Conference on Machine Learning (ICML-2001), Williams,
MA, 2001.

7. Andrew McCallum and Ben Wellner. Toward conditional models of identity uncer-
tainty with application to proper noun coreference. In Proceedings of the IJCAI-
2003 Workshop on Information Integration on the Web, pages 79–86, Acapulco,
Mexico, August 2003.

8. Parag and P. Domingos. Multi-relational record linkage. In Proceedings of 3rd
Workshop on Multi-Relational Data Mining at ACM SIGKDD, Seattle, WA, Au-
gust 2004.

10 S. Sarawagi

9. Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields
for information extraction. In NIPs (to appear), 2004.

10. Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2004.

11. F. Sha and F. Pereira. Shallow parsing with conditional random fields. In In
Proceedings of HLT-NAACL, 2003.

12. Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query evaluation
with probabilistic guarantees. In VLDB, pages 648–659, 2004.

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 11–32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Constraint Relaxations for Discovering Unknown
Sequential Patterns

Cláudia Antunes and Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID,
Department of Information Systems and Computer Science,

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
{claudia.antunes, arlindo.oliveira}@dei.ist.utl.pt

Abstract. The main drawbacks of sequential pattern mining have been its lack
of focus on user expectations and the high number of discovered patterns.
However, the solution commonly accepted – the use of constraints –
approximates the mining process to a verification of what are the frequent
patterns among the specified ones, instead of the discovery of unknown and
unexpected patterns.

In this paper, we propose a new methodology to mine sequential patterns,
keeping the focus on user expectations, without compromising the discovery of
unknown patterns. Our methodology is based on the use of constraint
relaxations, and it consists on using them to filter accepted patterns during the
mining process. We propose a hierarchy of relaxations, applied to constraints
expressed as context-free languages, classifying the existing relaxations (legal,
valid and naïve, previously proposed), and proposing several new classes of
relaxations. The new classes range from the approx and non-accepted, to the
composition of different types of relaxations, like the approx-legal or the non-
prefix-valid relaxations. Finally, we present a case study that shows the results
achieved with the application of this methodology to the analysis of the
curricular sequences of computer science students.

1 Introduction

Sequential Pattern Mining addresses the problem of discovering maximal frequent
sequences in a given database. This type of problem appears when the data to be
mined has some sequential nature, i.e., when each piece of data is an ordered set of
elements, like events in the case of temporal information, or nucleotides and amino-
acid sequences for problems in bioinformatics.

In general, we can see sequential pattern mining as an approach to perform inter-
transactional analysis, being able to deal with sequences of sets of items. Sequential
pattern mining was motivated by the need to perform this kind of analysis, mostly in
the retailing industry, but with applications in other areas, like the medical domain.
The problem was first introduced by Agrawal and Srikant, and, in the last years,
several sequential pattern mining algorithms were proposed [11], [13], [9]. Despite
the reasonable efficiency of those algorithms, the lack of focus and user control has
hampered the generalized use of sequential pattern mining. In general, the large

12 C. Antunes and A.L. Oliveira

number of discovered patterns makes the analysis of discovered information a
difficult task.

In order to solve this problem, several authors have promoted the use of constraints
to represent background knowledge and to filter the patterns of interest to the final
user. This approach has been widely accepted by the data mining community, since it
allows the user to control the mining process and reduces the search space, which
contributes significantly to achieve better performance and scalability levels. The
simplest constraint over the sequence content is to impose that only some items are of
interest – item constraints. An example of such constraint is the use of Boolean
expressions over the presence or absence of items [12]. When applied to sequential
pattern mining, constraints over the content can be just a constraint over the items to
consider, or a constraint over the sequence of items. More recently, regular languages
have been proposed [3] and used to constrain the mining process, by accepting only
patterns that are accepted by a regular language. In this case, constrained algorithms
use a deterministic finite automaton (DFA) to define the regular language. Generally,
these automata consist of a set of states and a set of transitions from state to state that
occur on symbols chosen from an alphabet. When applied to sequential pattern
mining, strings (sequences of symbols) are replaced by sequences of itemsets.

Although this approach has contributed to reduce the number of discovered
patterns and to match them to the user expectations, the use of regular languages
transforms the pattern mining process into the verification of which of the sequences
of the language are frequent, completely blocking the discovery of novel patterns. It is
important to note that by specifying the language, we are explicitly specifying which
are the sequences that can be considered, and the mining process is reduced to the
identification of which of these are frequent. By novel information, we mean the
information that is not trivially inferred from the constraint.

1.1 Motivation

Consider, for instance, the problem of identifying typical behaviors of company
customers. Suppose that the company considers that a well-behaved customer is a
customer who has made all its payments at the time of the analysis. This knowledge
can be represented by a context-free language, but cannot be by a regular language,
since it needs to count the number of invoices and payments.

q2q1
(a, S) push X

(a, S) push X
(a, X) push X

(b, X) pop

(ε, S) pop

Fig. 1. Pushdown automaton for representing well-behaved customers

The pushdown automaton presented in Fig. 1 (pushdown automata are described in
the next section) is able to represent that knowledge, with a corresponding to an

 Constraint Relaxations for Discovering Unknown Sequential Patterns 13

invoice and b to a payment. In conjunction with sequential pattern mining algorithms
allows for the discovery of each sequence of invoices and payments are frequent
(sequences like abab, aaabbb and aabbab).

However, if among the recorded data there are events related to second copies of
invoices, cancellations, information requests and answers to requests, for example,
and there is no knowledge about their relations with the other two kinds of events, it is
not possible to discover those relations with constrained sequential pattern mining. On
the other hand, with an unconstrained process the existing background knowledge
will be ignored. In this manner, it is clear that although constraints (formal languages
in particular) can be used to represent existing domain knowledge, they are not
enough to address the main data mining challenge: to discover novel information.

In this work, we propose a new mining methodology to solve the trade-off between
satisfying user expectations (by using background knowledge) and mining novel
information. Our methodology is based on the use of constraint relaxations, and it
assumes that the user is responsible for choosing the strength of the restriction used to
constrain the mining process. We propose a hierarchy of constraint relaxations (for
constraints expressed as formal languages – either regular or context-free), that range
from conservative to non-conservative relaxations, proposing two new types of
constraints – the approx and the non-accepted relaxations, and new relaxations
resulting from the composition of the different classes of relaxations.

After a concise description of the use of context-free languages to deal with
sequences of itemsets (section 2), the new methodology is defined (section 3),
presenting each of the relaxations (including the extension of the ones proposed in [3]
– naïve, legal and valid). In section 4, we present a case study with the analysis of
curriculum sequences, and, based on that data, we evaluate the use of constraint
relaxations, by comparing the number of discovered patterns and the processing times
using each relaxation. Section 5 concludes the paper with a discussion and ideas for
future work.

2 Context-Free Languages for Sequences of Itemsets

Recent work [1] has shown that regular expressions can be substituted by context-free
languages, without compromising the practical performance of algorithms, when
dealing with strings of items. This is useful because context-free languages are more
expressive than regular languages, being able to represent constraints that are more
interesting. In particular, the structure of constrained sequential pattern mining
algorithms does not need any change to use context-free languages as constraints. The
only adaptation is the substitution of the finite automaton by a pushdown automaton
(PDA), to represent the context-free language.

A pushdown automaton is a tuple M=(Q,Σ,Γ,δ,q0,Z0,F), where: Q is a finite set of
states; Σ is an alphabet called the input alphabet; Γ is an alphabet called the stack
alphabet; δ is a mapping from Q×Σ∪{ε}×Γ to finite subsets of Q×Γ*; q0∈Q is the
initial state; Z0∈Γ is a particular stack symbol called the start symbol, and F ⊆Q is the
set of final states [6].

14 C. Antunes and A.L. Oliveira

The language accepted by a pushdown automaton is the set of all inputs for which
some sequence of moves causes the pushdown automaton to empty its stack and reach
a final state.

When applied to the process of mining sequential patterns from sequences of
itemsets instead of strings (sequences of symbols), pushdown automata have to be
redefined. The problem is related with the fact that existing algorithms manipulate
one item per iteration, instead of an entire itemset. In this manner, we need to perform
partial transitions, corresponding to the item involved at the specific step iteration. To
illustrate this situation consider the pushdown automaton defined over itemsets
represented in Fig. 2 (left). This PDA generates sequences with the same number of
baskets (a,b) on the left and right side of item c, which means that it generates
sequences like (a,b)c(a,b) or (a,b)(a,b)c(a,b)(a,b). Formally, it can be defined as the
tuple M=(Q, Σ, Γ, δ, q1, S, F), with Q={q1, q2} the set of states, Σ={ a, b, c} its
alphabet, Γ={S, X} the stack alphabet, q1 the initial state, S the initial stack symbol
and F={q2} the set of final or accepting states. Finally, δ corresponds to the five
transitions illustrated in Fig. 2-left (for example "[(a,b),S] pushX" represents the
transition from state q1 to state q2, when the stack has the symbol S in the top and we
are in the presence of (a,b)).

q2q1

[(a,b),X] pop

[ε, S] pop

[(a,b), S] push X

[(c), X] no op

[(a,b), X] push X

q2q1

[(a,b),XY] pop

[ε, S] pop

[(a,b), S] push XY

[(c), XY] no op

[(a,b), XY] push XY

Fig. 2. Pushdown (left) and Extended Pushdown (right) automata

Consider for example that algorithm PrefixGrowth [10] is applied and it finds a, b
and c as frequent. Then it will have to proceed to discover which items are frequent
after a. At this point, there is already one problem: given that it has found a, which
operation should it perform over the stack? If it pushes X, then c will be accepted after
a, but if it only applies the push operation after finding b, then it will accept, as
"potentially accepted", sequences like aaa, aaaaa and so on, since S remains on the
top of the stack.

In order to deal with itemsets, we extend the notion of PDA.

An extended pushdown automaton (ePDA) is a tuple E=(Q, Σ, Γ, δ, q0, Z0, F),), with Q,
Σ, Γ, q0, Z0 and F defined as for pushdown automata, but δ defined as a mapping
function from Q×P (Σ)∪{ε}×Γ* to finite subsets of Q×Λ*, with Λ equal to Γ* and P (Σ)
representing the powerset of Σ.

The difference to standard pushdown automata is the transition function, which
manipulates itemsets and strings of stack elements instead of items and stack
elements, respectively. With this extension, it is possible to explore sequences of
itemsets with existing algorithms. Fig. 2-right illustrates an extension to the PDA

 Constraint Relaxations for Discovering Unknown Sequential Patterns 15

illustrated before. Clearly, on one hand, by using extended pushdown automata,
algorithms such as SPIRIT or PrefixGrowth do not need any alteration on their
structure. On the other hand, their performances remain tightly connected to the
number of discovered patterns and almost nothing related to the complexity of the
constraint.

3 Constraint Relaxations

While the problems of representing background knowledge in sequential pattern
mining and the reduction of the number of discovered patterns can be solved using
formal languages, the challenge of discovering unknown information, keeping the
process centered on user expectations, remains open.

At this point, it is important to clarify the meaning of some terms. By novel
information, we mean both the information that cannot be inferred in the reference
frame of the information system or of the user, and centering the process in the user
has essentially two aspects: the management of user expectations and the use of user
background knowledge in the mining process. By expectation management, we mean
that the results from the process have to be in accordance with user expectations, with
similarity measured by comparing them to the user's background knowledge.

In the case of sequential pattern mining using constraints expressed as context-free
languages, it is clear that:

- the existing background knowledge is represented and integrated in the mining
process as a context-free language;

- the process is completely centered on the user, since the process will only
discover patterns that are in accordance with his background knowledge (this
means that only sequences that belong to the context-free language will be of
interest);

- it is not possible to discover novel information, since all the discovered patterns
need necessarily be contained in the context-free language specified by the user.

Considering these limitation, we propose a new methodology to mine unknown
patterns, while keeping the process centered on the user. This methodology is based
on the use of constraint relaxations, instead of constraints themselves, to filter the
discovered patterns during the mining process. The notion of constraint relaxation has
been widely used when real-life problems are addressed, and in sequential pattern
mining, they were first used to improve the performance of the algorithm [3]. The key
point is that, in many cases, the user is able to specify easily a constraint that is too
restrictive, but is not capable to specify a constraint that is adequate for the task at
hand. For instance, the user may be able to specify a normal behavior, but will be
hard pressed to specify an almost normal or approximately normal behavior.

A constraint relaxation can then be seen as an approximation to the constraint, that
captures the essence of the user knowledge but that does not restrict too much the
universe of possible patterns. In other words, while constraints explicitly specify
which sequences can be discovered, constraint relaxations determine the way that the
knowledge (expressed by the constraint) can be used to guide the mining process. In
this manner, when used instead of the constraints expressed by the user, relaxations

16 C. Antunes and A.L. Oliveira

can give rise to the discovery of novel information, in the sense that the patterns
discovered can no longer be directly inferred from the background knowledge, i.e.
from the reference frame of the user. If these relaxations are used to mine new
patterns, instead of simply used to filter the patterns that satisfy the imposed
constraint, the discovery of novel information is possible. Given that the user may
choose the level of relaxation allowed (the type of relaxation), it is possible to keep
the focus and the interactivity of the process, while still permitting the discovery of
novel and unknown information. In this manner, the goal of data mining will be
achieved. Additionally, some of the unresolved challenges of pattern mining will be
addressed, namely: how to use constraints to specify background knowledge and user
expectations; how to reduce the number of discovered patterns by constraining the
search space, and how to reduce the amount of time in processing the discovery.

In order to achieve those results, we propose four main classes of relaxations over
constraints expressed as formal languages, as illustrated in Fig. 3. The differences
between them result from the redefinition of the acceptability notion for the formal
language that defines the constraint.

Constraint
Relaxation

Legal Valid-
suffix

Approximate
Constraint

Non-
Accepted

Conservative
Relaxation

Valid-
prefix

Approx
-Legal

Approx
-Suffix

Approx
-Prefix

Non-
Legal

Non-
Suffix

Non-
Prefix

Naive
Relaxation

Approx
-Naive

Non-
Approx

Fig. 3. Hierarchy of constraint relaxations

The first class of relaxations is the Naïve relaxation, which corresponds to a simple
item constraint. However, in the context of constraints expressed as formal languages,
it can be seen as a relaxation that only accepts patterns containing the items that
belong to the language alphabet.

Conservative relaxations group the other already known relaxations, used by
SPIRIT [3], and a third one – Valid-Prefix, similar to Valid-suffix.

It is important to note that conservative relaxations are not able to discover
unknown patterns, just sub-patterns of expected ones. Approximate matching at a
lexical level has been considered an extremely important tool to assist in the
discovery of new facts, but ignored in most of the approaches to pattern mining. It
considers two sequences similar if they are at an edit distance below a given
threshold. An exception to this generalized frame is the AproxMAP [7], which uses
this distance to count the support for each potential pattern. However, to our
knowledge, edit distance has not been applied to constrain the pattern mining process.

To address the need to identify approximate matching we propose a new class of
relaxations – the Approx relaxation, which accept the patterns that are at an
acceptable edit distance from some sequence accepted by the constraint.

 Constraint Relaxations for Discovering Unknown Sequential Patterns 17

Another important relaxation is related with the discovery of low frequency
behaviors that are still very significant to the domain. Fraud detection is the paradigm
of such task. Note that the difficulties in fraud detection are related with the explosion
of discovered information when the minimum support threshold decreases.

To address the problem of discovering low frequency behaviors, we propose an
additional class of relaxations – the Non-accepted relaxation. If L is the language
used to constrain the mining process, Non-accepted relaxations will only accept
sequences that belong to the language that is the complement of L.

Additionally, each of these relaxations can be combined, creating compositions of
relaxations, that can be used directly as filters. Examples of such compositions are
approx-legal or non-approx.

Next, we will present each class of constraint relaxations. To illustrate the
concepts, consider the extended pushdown automaton in Fig. 2-right.

3.1 Naïve Relaxation

As stated, the Naïve relaxation only prunes candidate sequences containing elements
that do not belong to the alphabet of the language, For example, if we consider the
specified automaton, only sequences with a’s, b’s and c's are accepted by the Naïve
relaxation.

In this manner, a sequence is accepted by the naive criterion in exactly the same
conditions than for regular languages. However, this relaxation prunes a small number
of candidate sequences, which implies a limited focus on the desired patterns.

Since Naïve relaxation is anti-monotonic, no change in sequential pattern mining
algorithms is needed.

3.2 Conservative Relaxations

Conservative relaxations group the Legal and Valid relaxations, used in SPIRIT, and a
third one – Valid-Prefix, complementary to the Valid relaxation (called Valid-Suffix
in the rest of the paper). These relaxations impose a weaker condition than the
original constraint, accepting patterns that are subsequences of accepted sequences.
When used in conjunction with context-free languages, those relaxations remain
identical, but we have to redefine the related notions.

First of all consider the partial relation ψ, which maps from Q×S×Γ* to Q×Λ*
representing the achieved state q∈Q and top of the stack λ∈Λ* (with Λ equal to Γ*),
when in the presence of a particular sequence s∈S in a particular state q∈Q and a
string of stack symbols w∈Γ*. Also, consider that λ.top is the operation that returns
the first string on λ.

ψ(qi, s=<s1…sn>, w) is defined as follows:
i. (qi, λ), if |s|=0 ∧ ∃ λ∈Λ*: λ=w

ii. (qj, λ), if |s|=1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj, λ)
iii. ψ(qj,<s2…sn>,λ.top), if |s|>1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj,λ)

Additionally, consider that the elements on each itemset are ordered
lexicographically (as assumed by sequential pattern mining algorithms). In this
manner, it is possible to define two new predicates:

18 C. Antunes and A.L. Oliveira

Given two itemsets a=(a1…an) and b=(b1…bm), with n<m: a is a prefix of b if for all
1 i n ai is equal to bi and a is a suffix of b if for all 1 i n ai is equal to bi+(m-n).

Legal. The Legal relaxation requires that every sequence is legal with respect to some
state of the automaton, which specifies the constraint language. The extension of legal
relaxation to context-free languages is non-trivial, since the presence of a stack (on
the automaton) makes the identification of legal sequences more difficult. However, it
is possible to extend the notion of legality of a sequence with respect to any state of
an extended pushdown automaton.

A sequence s=<s1…sn> is legal with respect to state qi with the top of the stack w, iff
i. |s|=1 ∧ ∃ sk∈Σ∗;qj∈Q;λ∈Λ*:δ(qi,sk,w)⊃(qj,λ)∧ s1⊆sk

ii. |s|=2 ∧ ∃ sk,sk'∈Σ∗;λ,λ'∈Λ*;qj,qj'∈Q: δ(qi,sk,w)⊃(qj',λ) ∧ s1 suffixOf sk
∧ δ(qj',sk',λ.top)⊃(qj,λ')∧ s2 prefixOf sk'

iii. |s|>2 ∧ ∃ sk,sk'∈Σ∗;λ,λ',λ''∈Λ*;qj,qj',qj''∈Q: δ(qi,sk,w)⊃(qj',λ)∧ s1 suffixOf sk
∧ ψ(qj',s2…sn-1,λ.top)=(qj'',λ') ∧ δ(qj'',sk',λ'.top)⊃(qj,λ'')∧sn prefixOf sk'

This means that any sequence with one itemset is legal with respect to an extended
pushdown automaton state, if there is a transition from it, defined over a superset of
the itemset (i). When the sequence is composed of two itemsets, it is legal with
respect to a state, if the first itemset is a suffix of a legal transition from the current
state, and the second itemset is a prefix of a legal transition from the achieved state
(ii). Otherwise, the sequence is legal if the first itemset is a suffix of a legal transition
from the state, s2…sn-1 corresponds to a valid path from the state and stack reached,
and the last itemset is a prefix of a legal transition from the state and stack reached
with s2…sn-1.

Examples of legal sequences with respect to the initial state of the specified
automaton are: a, b and c (by rule i), bc and (a,b)c (by rule ii) and bca and (a,b)ca (by
rule iii). Examples of non-legal sequences are ac (by ignoring rule ii) or acb (by
ignoring rule iii).

Note that ψ is only defined for non-empty stacks. Indeed, in order to verify the
legality of some sequence s, it is necessary to find a sequence of itemsets t that can be
concatenated to s, creating a sequence ts accepted by the automata.

Valid-Suffix. The Valid-Suffix relaxation only accepts sequences that are valid
suffixes with respect to any state of the automaton. Like for legal relaxation, some
adaptations are needed when dealing with context-free languages.

A sequence s=<s1…sn> is a valid-suffix with respect to state qi with top of the stack w, iff
i. |s|=1 ∧ ∃ sk∈Σ∗;λ∈Λ*;qj∈Q: δ(qi,sk,w)⊃(qj,λ) ∧ s1suffixOf sk ∧ λ.top=ε

ii. |s|>1 ∧ ∃ sk',sk''∈Σ∗;λ',λ''∈Λ*;qj,qj',qj''∈Q: δ(qi,sk,w)⊃(qj',λ)∧s1 suffixOf sk
∧ ψ(qj',s2…sn,λ.top)=(qj,λ')∧ λ.top=ε

This means that a sequence is a valid-suffix with respect to a state if it is legal with
respect to that state, achieves a final state and the resulting stack is empty. In
particular, if the sequence only has one itemset, it has to be a suffix of a legal
transition to an accepting state.

 Constraint Relaxations for Discovering Unknown Sequential Patterns 19

Considering the extended pushdown automaton as before, examples of such
sequences are b, (a,b), c(a,b) and bc(a,b). Negative examples are, for instance, bca or
bcb. Note that, in order to generate valid-suffix sequences with respect to any state, it
is easier to begin from the final states. However, this kind of generating process is one
of the more difficult when dealing with pushdown automata, since it requires a
reverse simulation of their stacks.

In order to avoid this difficulty, using prefix instead of suffix validity could
represent a more useful relaxation, when dealing with context-free languages. Note
that valid-suffixes are not prefix-monotone, and could not be easily used by pattern-
growth methods [9].

Valid-Prefix. The valid-prefix relaxation is the counterpart of valid-suffix, and
requires that every sequence is legal with respect to the initial state.

A sequence s=<s1…sn> is said to be prefix-valid iff:
i. |s|=1 ∧ ∃ sk∈Σ*; λ∈Λ*: δ(q0,sk,Z0) ⊃ (qj,λ) ∧ s1 prefixOf sk

ii. |s|>1 ∧ ∃ sk∈Σ*; λ,λ'∈Λ*;qj,qj'∈Q: ψ(q0,s1…sn-1,Z0)=(qj',λ')∧ δ(qj',sk,λ'.top) ⊃ (qj,λ)
∧ sn prefixOf sk

This means that a sequence is prefix-valid if it is legal with respect to the initial
state and the first itemset is a prefix of a transition from the initial state. Sequences
with valid prefixes are not difficult to generate, since the simulation of the stack
begins with the initial stack: the stack containing only the stack start symbol. The
benefits from using the suffix-validity and prefix-validity are similar. When using the
prefix-validity to generate the prefix-valid sequences with k elements, the frequent
(k-1)-sequences are extended with the frequent 1-sequences, in accordance with the
constraint. Examples of valid-prefixes are (ab) and (ab)ca; (a)c or bc are examples of
non-valid prefixes.

Note that the legal relaxation accepts all the patterns accepted by valid-suffix and
valid-prefix relaxations. In this manner, it is a less restrictive relaxation than the other
two. Although these relaxations have considerable restrictive power, which improves
significantly the focus on user expectations, they do not allow for the existence of
errors. This represents a strong limitation in real datasets, since little deviations may
exclude many instances from the discovered patterns.

3.3 Approx Constraints

In order to solve this problem we propose a class of relaxations that accepts sequences
that have a limited number of errors. If it is possible to correct those errors with a
limited cost, then the sequence will be accepted.

A new class of relaxations, called approx relaxations, tries to accomplish this goal:
they only accept sequences that are at a given edit distance for an accepted sequence.
This edit distance is a similarity measure that reflects the cost of operations that have
to be applied to a given sequence, so it would be accepted as a positive example of a
given formal language. This cost of operations will be called the generation cost, and
is similar to the edit distance between two sequences, and the operations to consider
can be the Insertion, Deletion and Replacement [8].

20 C. Antunes and A.L. Oliveira

Given a constraint C, expressed as a context-free language, and a real number ε which
represents the maximum error allowed, a sequence s is said to be approximate-accepted
by C, if its generation cost (s, C) is less than or equal to ε. The generation cost (s, C)
is defined as the sum of costs of the cheapest sequence of edit operations transforming
the sequence s into a sequence r accepted by the language C.

For example, considering the extended pushdown automaton defined above,
ac(a,b) and (a,b)(a,b) are approx-accepted sequences with one error, which result
from inserting a b on the first itemset, on the first example, and a c on the second
position, on the second example, respectively. c(a,b) and b(a,b) are non-approximate
accepted with one error, since two edit operations are needed to accept them.

The other four classes of approximate constraints are defined by replacing the
acceptance by legality and validity notions. In this manner, an Approx-Legal
relaxation accepts sequences that are approximately legal with respect to some state.
Approx-Suffix and Approx-Prefix relaxations are defined in a similar way. Finally,
Approx-Naïve accepts sequences that have ε items (with ε the maximum error
allowed) that do not belong to the language's alphabet.

Recent work has proposed a new algorithm –accepts [2] to verify if a sequence
was approximately generated by a given deterministic finite automata (DFA).
Fortunately, the extension to deal with context-free languages is simply achieved by
replacing the use of a DFA by the use of an ePDA. The results shown in this paper
were achieved by using such an algorithm.

3.4 Non-accepted Relaxation

Another important issue is related with the discovery of low frequency behaviors that
are still very significant to the domain.

Suppose that there is a model (expressed as a context-free language) able to
describe the frequent patterns existing on a huge database (say for example that the
minimum support allowed is 10%). If there are 3% of clients with a fraudulent
behavior, it is possible that they are not discovered neither by using the unconstrained
mining process, nor by using any of the proposed relaxations. However, the model of
non-fraudulent clients may be used to discover the fraudulent ones: the fraudulent
clients are known to not satisfy the model of non-fraudulent clients.

To address the problem of low frequency behaviors discovery, we propose an
additional class of relaxations – the Non-accepted relaxation, which accept sequences
that are not accepted by the constraint.

A sequence is non-accepted by the language if it is not generated by that language.

In fact, this is not really a relaxation, but another constraint (in particular the
constraint that only accepts sequences that belong to the language that is the
complement of the initial constraint). However, since they are defined based on the
initial constraint, we choose to designate them as relaxations.

The benefits from using the non-accepted relaxation are mostly related to the
possibility of not rediscovering already known information, which may contribute
significantly to improve the performance of sequential pattern mining algorithms.
Moreover, since context-free languages are not closed under complementation [6]
(which means that the complement of a context-free language is not necessarily a

 Constraint Relaxations for Discovering Unknown Sequential Patterns 21

context-free language), the use of the complement instead of the non-accepted
relaxation could be prohibitive.

Note that by using this new approach, it is possible to reduce the search space, and
consequently to reduce the minimum support allowed. The non-accepted relaxation
will find all the patterns discovered by the rest of the introduced relaxations,
representing a small improvement in the focus on user expectations. In fact, it finds
all the patterns discovered by unconstrained patterns minus the ones that are accepted
by the constraint. Like for approx relaxations, an interesting improvement is to
associate a subset of the alphabet in conjunction with the non-accepted relaxation.
This conjunction focus the mining process over a smaller part of the data, reducing
the number of discovered sequences, and contributing to achieve our goal.

As before, the sub-classes of Non-Accepted relaxations result by combining the
non-acceptance philosophy with each one of the others relaxations. While non-
accepted relaxation filters only a few patterns, when the constraint is very restrictive,
the non-legal relaxation filters all the patterns that are non-legal with respect to the
constraint. With this relaxation is possible to discover the behaviors that completely
deviate from the accepted ones, helping to discover the fraudulent behaviors.

3.5 Discussion: Novelty and Expectedness

The discussion about the concept of novel information is one of the most difficult in
pattern mining. While the concept is clear in the reference frame of a knowledge
acquisition system, the same is not true in the reference frame of the final user.
Indeed, several interestingness measures have been proposed for the evaluation of the
discovered patterns [4]. Moreover, this issue is more critical with the introduction of
constraints in the mining process. In fact, in the presence of constraints the concept of
novel patterns becomes unclear even in the reference frame of information systems,
since they are then able to use the knowledge, represented as the constraint.

In order to bring some light into the discussion, consider that, given a model C as
constraint, a pattern A is more novel than a pattern B, if the generation cost of A by
model C is larger than the generation cost of B by model C (with the generation cost
defined as above). With this concept, it is now possible to understand the reason why
non-accepted patterns can be more novel than the patterns discovered by conservative
relaxations. It is now clear that, despite the differences between relaxations, all of
them allow for the discovery of novel information. Indeed, the conservative
relaxations are able to discover failure situations, that is, situations when for, some
reason, the given model is not completely satisfied (valid-prefix and valid-suffix
identify failures in the beginning and ending of the model, respectively, and legal
identifies problems in the middle of the model).

However, the great challenge of pattern mining is to discover novel information
that is interesting to the user. It is clear from the definition of the novel relation, that
an unexpected pattern is more novel than an expected one. In fact, the challenge
resides in the balance between the discovery of novel but somehow expected patterns.
The proposed relaxations cover a wide range of this balance, giving the user the
option of which is the most relevant issue for the problem in hands: to discover novel
information or to satisfy user expectations.

22 C. Antunes and A.L. Oliveira

Consider the PDA and the data shown in Fig. 4: the PDA represents a more
restrictive notion of well-behaved costumer – a costumer who as at most two invoices
to pay. If we apply the proposed methodology to analyze that data, we will be able to
discover several different patterns with the different relaxations, as shown in Table 1.

q4q3
(b, X) pop

(a, S) push X
(a, X) push X

(b, X) pop

q2
(a, X) push X

q1
(a, S) push X

(b, X) pop

(ε, S) pop

Dataset
eababraabb aababbaerb
aabbaberab ababaabbab
aebraaaccd aebaraacbe
abaaaccder abaeraacbb
aebaraaacb aaacbabab

Fig. 4. Example of a pushdown automaton and a small dataset

In order to permit an easy comparison, only maximal patterns are shown. In this
manner, some patterns appear only in some columns. In the column relative to the
approx relaxation, are shown the edit operations needed to transform each pattern to a
pattern belonging to the context-free language.

Table 1. Comparison of the results achieved with and without constraints

Frequent Accepted Legal Prefix Approx.(=1)
Non-Acc (w/
Σ={a,c,d,e,r}

be
baa
era
braa
baba
baer
araa
abab
abaa
raacb
raaac
aaacb
aabbab
aaaccd
aebaraa

abab
aabbab

baba
abab
abaa
aabbab

abab
abaa
aabbab

abab
aabbab
ar R(r,b,2)
aeb D(e,2)
abaa R(a,b,4)
aacb R(c,b,3)

aer
era
raac
araa
raaac
aaaccd

As expected, by using the constraint itself we only discover two patterns, which
satisfy the context-free language. Therefore, these results are not enough to invalidate
Hipp's arguments [5] about constraints. Nevertheless, with Legal and Valid-prefixes,
it is possible to discover some other intermediate patterns, which are potentially
accepted by the complete constraint.

 Constraint Relaxations for Discovering Unknown Sequential Patterns 23

Finally, with approx and non-accepted relaxations, it is possible to discover
unexpected patterns. Indeed, the approx relaxation shows the most interesting
behavior, since it is possible to discover that it is usual that after sending the second
invoice, customers pay their old bills (aacb). With non-accepted relaxation, it is also
possible to discover interesting patterns. In this case, it is common that after three
invoices without any payment, and the emission of two second invoices, the customer
account is canceled (aaaccd).

4 Discovering Frequent Curricula: A Case Study

In this paper, we claim that it is possible to discover unknown information, using
sequential pattern mining with constraint relaxations, without loosing the focus on
user expectations. In order to validate these claims, we present the results achieved by
applying this methodology to the discovery of frequent curricula instantiations from
the data collected from IST student's performance in one undergraduate program on
information technology and computer science. For this purpose, we will evaluate our
methodology by comparing: the performance of each mining process; the number of
discovered patterns and the ability to answer the relevant questions.

The curriculum has a duration of 10 semesters with 36 required subjects, a final
thesis and 4 optional subjects in the last year. Four specialty areas are offered: PSI –
Programming and Information Systems; SCO – Computer Systems; IAR – Artificial
Intelligence and IIN – Information Systems for Factory Automation.

0

1

2

3

4 5 6 7

8 9 10 11

16 17 18 19

12 13 14 15

(AM1,AL,IP,SD,FEX)

(AC,TC,AED,F1,AM2)

(PLF,SO,AN,F2,AM3)

(POO,SIBD,ASC,PE,TP1)

(POO,SIBD,ASC,PE,TCirc)

(POO,SIBD,TAI,PE,FA)

(POO,SIBD,ASC,AM4,PE)

(SCI1,IA,TP2,PBD) (CG,C,RC,SCI2) (M,AD,IHM,PC)

(SCI1,IA,CSE,SCD)
(SC1,IA,CSE,M)

(CG,C,SCI2,E)
(CG,C,RC1,E)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(IA,AD,FL,P) (CG,RC,TP,LP) (Rac,Apr,LN,IHM)

(IA,CC,PS,SCI) (CG,GCP,ACI,SAC) (AD,M,PAC,Rob)

20

21

22

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1)

(TFC2)

Fig. 5. DFA for specifying the model curriculum for LEIC specialty areas

There are 20 common subjects in the curriculum model, 18 on the first three
semesters and the other 2 on the following two semesters. The enrollment on a
specialty area was made on the fourth semester. There are 47 other subjects,
distributed by each specialty area. The deterministic finite automaton on Fig. 5 shows
the model curriculum for each specialty area. (The existence of two different
transitions per semester for SCO students, are due to a minor reorganization of the
SCO curriculum on 1995/1996.)

24 C. Antunes and A.L. Oliveira

Data Statistics. The dataset used to analyze those questions consists on the set of
sequences corresponding to the curriculum followed by students that made at least 8
enrollments. In this manner, the dataset is composed of 1440 sequences, with an
average sequence length equal to 11.58 semesters. Most of the students (72%) have
between 8 and 12 enrollments (they had attended classes between 8 and 12
semesters). Naturally, the number of students with an odd sequence length is reduced,
since this situation corresponds to students that have registered in only one semester
on that year. In terms of the number of enrollments per semester, its mean is 4.82
enrollments on subjects per semester, with most students (75%) enrolling on between
4 and 6 units.

Another interesting issue is the distribution of students per specialty area: 56%
follow the PSI specialty area, 19% the SCO specialty area and the remaining 26% are
equally distributed by IAR and IIN specialty areas. This distribution conditions the
number of enrollments per subject. For example, subjects exclusive to Artificial
Intelligence and IIN have at most 13% of support.

It is interesting to note that only 823 students (57%) have concluded the final work
(TFC1 and TFC2). Since it is usual that students only take optional subjects in parallel
or after finishing the final work, the support for optional subjects is at most 57%.
Since the options are chosen from a large set of choices (130 subjects), their
individual support is considerably lower. Indeed Management (G) is the optional
subject with more students, about 40%.

4.1 Evaluation of Discovered Information

The analysis of the data referring to students' performance has essentially two main
reasons: to explain the low levels of success and to identify the most common profiles
of students. In this manner, we will try to answer three questions: 'what are the most
common patterns on each scientific area?', 'what is the impact of some subjects on
others?' and 'what are the common curricula instantiations for each specialty area,
including optional subjects?'.

Finding Frequent Curricula on Scientific Areas. The discovery of the most
common patterns on each scientific area is easily achieved if we look for students,
who conclude the sequence of subjects in the same scientific area in at most four
semesters. This constraint can be specified by the extended pushdown automaton
represented on Fig. 6. In this figure, each transition represents four transitions, one per
scientific area. For example, [~X2,sa(X2)] push sa(X2) represents
[~AED,MTP] push MTP, [~AC,ASO] push ASO, [~AM2,AM] push AM and
[~F1,F] push F. Consider that X1, X2 and X3 are the first, second and third
subjects on some of the following scientific areas: MTP, ASO, Physics and
Mathematical Analysis. Also, consider that sa is a function from the set of
subjects to their scientific area, for example sa(IP)=MTP.

The first thing that we are able to discover, using a constraint defined over the
ePDA on Fig. 6 (with a gap equal to zero) is that the majority of students are able to
conclude the sequence of MTP (61%) and ASO (57%) subjects without any failure.
Additionally, 6% of students are also able to conclude all but one of those subjects in
four semesters (see shadowed patterns in Table 2-left).

 Constraint Relaxations for Discovering Unknown Sequential Patterns 25

2 3[(X2), sa(X2)] noop [(X3), sa(X3)] pop 41 [(X1), S] push(sa(X1))

5

[(~X1), S] push(sa(X1))

6[(X2), sa(X2)] push(sa(X2))

7

[(~X2), sa(X2)] push(sa(X2))
[(X1,X3), sa(X1X3)] pop

8

[(X2), sa(X2)] pop
[(X1,X3), sa(X1X3)] pop[(~X2), sa(X2)] push(sa(X2))

9 [(X3), sa(X3)] pop

Fig. 6. ePDA for specifying the curricula on scientific areas, where students conclude three
subjects in a specific scientific area at most on 4 semesters

Table 2. Discovered Patterns per Scientific Areas

Discovered Patterns
With Constraints Sup With Approx Relaxation Sup

<(IP),(AED),(PLF)> 61% <(AM1),(~AM2),(~AM3),(AM2)> 6%
<(IP),(~AED),(PLF),(AED)> 6% <(AM1),(~AM2),(AM2)> 6%
<(SD),(AC),(SO)> 57% <(AM1),(AM2),(~AM3,AM3)> 6%
<(SD),(~AC),(SO),(AC)> 6% <(FEX),(F1),(~F2)> 22%
<(FEX),(F1),(F2)> 35% <(FEX),(~F1),(~F2),(F1)> 8%
<(FEX),(~F1),(F2),(F1)> 5% <(FEX),(~F1),(F2),(F1)> 5%
<(AM1),(AM2),(AM3)> 31% <(~F2),(F1),(F2)> 6%
 <(IP),(AED),(~PLF)> 12%
 <(IP),(~AED),(PLF),(POO)> 6%
 <(~IP),(~AED),(IP),(AED)> 5%
 <(SD),(AC),(~SO)> 13%
 <(~SD),(~AC),(SD),(AC)> 6%

It is important to note that there is no other trivial way to perform an identical
analysis. Usually, the results are stored in separate records, making more difficult the
sequential analysis with simple queries. Remember that those queries require several
natural joins, one for each constraint on the required sequence of results. In fact, the
queries must define the entire automata with those operations, which is not a simple
task. No other kind of queries will be able to address this problem, because without
the sequence information, we are just able to discover how many students have
approved or failed in each subject.

In this manner, constrained sequential pattern mining is a natural way to perform
this kind of analysis, only requiring that "experts" design the possible curricula, which
is trivial, since they are publicly known.

When applying an Approx relaxation, we are able to discover part of the patterns
followed by students that are not able to conclude all subjects in four semesters, as
specified in the previous automaton. For example, one of the causes of failure on the
sequence of ASO subjects is failing on the subject of Operating Systems (SO). Since
this subject is the third one in the sequence and it is only offered in the Fall semester,
students in that situation are not able to conclude the three subjects in four semesters.
Similarly, students that fail on the subjects of Physics 2 (F2), Mathematical

26 C. Antunes and A.L. Oliveira

Analysis 3 (AM3) and Functional and Logic Programming (PLF) are not able to
conclude the corresponding sequences on 4 semesters, as shown in Table 2-right.

Another interesting pattern found is that 6% of students fail in the first opportunity
to conclude Mathematical Analysis 3 (AM3), but seize the second opportunity,
concluding that subject in the first enrollment (shadowed line in Table 2-right).

Additionally, the use of the approx relaxation also contributes to analyze the
impact of some subjects on others. For example, an approx relaxation with one error
discovers that 49% of the students that conclude MTP subjects in 3 semesters fail on
AM3 and 40% on F2. Similarly, 45% of students that conclude ASO subjects in 3
semesters fail on AM3 and 39% on F2 (shadowed patterns in Table 3).

Table 3. Patterns in scientific areas with one error

Patterns Sup Patterns Sup
<(IP,SD),(AED),(PLF)> 57%<(IP,~SD),(AED),(PLF)> 8%
<(IP),(AED),(PLF,SO)> 53%<(IP),(AED),(PLF,~SO)> 10%
<(IP),(AED,AC),(PLF)> 53%<(IP),(AED,~AC),(PLF)> 8%
<(SD),(AC),(PLF,SO)> 51%<(SD),(AC),(~PLF,SO)> 8%
<(IP,AM1),(AED),(PLF)> 50%<(IP,~AM1),(AED),(PLF)> 15%
<(SD,AM1),(AC),(SO)> 47%<(SD,~AM1),(AC),(SO)> 15%
<(IP),(AED,AM2),(PLF)> 45%<(IP),(AED,~AM2),(PLF)> 16%
<(IP),(AED,F1),(PLF)> 45%<(IP),(AED,~F1),(PLF)> 16%
<(SD),(AC,F1),(SO)> 41%<(SD),(AC,~F1),(SO)> 16%
<(SD),(AC,AM2),(SO)> 41%<(SD),(AC,~AM2),(SO)> 16%
<(IP),(AED),(PLF,F2)> 36%<(IP),(AED),(PLF,~F2)> 24%
<(SD),(AC),(SO,F2)> 34%<(SD),(AC),(SO,~F2)> 23%
<(FEX,AM1),(F1),(F2)> 31%<(~AM1,FEX),(F1),(F2)> 6%
<(FEX),(F1),(SO,F2)> 31%<(FEX),(F1),(~SO,F2)> 5%
<(IP),(AED),(PLF,AM3)> 29%<(IP),(AED),(PLF,~AM3)> 30%
<(FEX),(F1,AM2),(F2)> 28%<(FEX),(F1,~AM2),(F2)> 7%
<(SD),(AC),(SO,AM3)> 27%<(SD),(AC),(SO,~AM3)> 26%
<(AM1),(AM2),(F2,AM3)> 23%<(AM1),(AM2),(~F2,AM3)> 8%
<(FEX),(F1),(F2,AM3)> 21%<(FEX),(F1),(F2,~AM3)> 14%

Finding Common Curricula Instantiations with Optional Subjects. The challenge
on finding which students choose what optional subjects is a non-trivial task,
especially because all non-common subjects can be chosen as optional by some
student. A simple count of each subject support does not give the expected answer,
since most of the subjects are required to some percentage of students.

The other usual approach would be to query the database to count the support of
each subject, knowing that students have followed some given curriculum. However,
this approach is also unable to answer the question, since a considerable number of
students (more than 50%) have failed one or more subjects, following a slightly
different curriculum.

In order to discover the optional subjects frequently chosen by students, we have
used the methodology previously proposed – the use of constraint relaxations,
defining a constraint based on the DFA shown in Fig. 7.

 Constraint Relaxations for Discovering Unknown Sequential Patterns 27

2

3

5

4

(M,AD,IHM,PC)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(Rac,Apr,LN,IHM)

(AD,M,PAC,Rob)

6 7

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1) (TFC2) 81

Fig. 7. DFA for finding optional subjects

This automaton accepts sequences that represent the curricula on the fourth
curricular year for each specialty area (the first for PSI students, the second one for
SCO, the third for IAR and the fourth for IIN). In practice, a constraint defined over
this DFA filters all patterns that do not respect the model curriculum for the last two
curricular years.

The use of constrained sequential pattern mining (with the specified constraint)
would not contribute significantly to answer the initial question, since it would only
achieve results similar to the ones obtained by the query above.

However, the use of the Approx relaxation described enables the discovery of
several patterns. If the relaxation accepts at most two errors (ε=2) chosen from a
restricted alphabet, composed by every non-common subject, we are able to find the
frequent curricula instantiations with optional subjects. In general, students mostly
attend Computer Graphics (PAC–Computed Assisted Project; IHM–
Human Machine Interfaces) and Management subjects (Economy–E; Economical
Theory 1–TE1; Financial Management–GF; Management–G; Management
Introduction–IG), as shown in Table 4.

It is interesting to note that whenever IIN students have failed on some subject on
the 4th year, they choose a specific optional subject in Economy (TE1 or IG). The
same happens for PSI and IAR students (behavior identified by shadowed rules). Note
that in order to discover these rules, we have to be able to admit some errors on the
sequence of subjects per specialty area, which is not easily done by specifying a query
to a database.

Another interesting issue is the inexistence of frequent optional subjects among
IAR and SCO students. Indeed, for the last ones there is only one frequent optional
subject (Management – G).

Finding Artificial Intelligence Curricula. As can be seen in previous analysis, the
subjects exclusive to AI students have very low supports (about 13%). Naturally, the
sequences of consecutive subjects have supports that are even lower. Indeed, the
discovery of Artificial Intelligence (IAR) frequent curricula, like for IIN, is non-
trivial, since the number of students in these specialty areas is reduced.

28 C. Antunes and A.L. Oliveira

Table 4. Patterns with optional subjects attended by LEIC students

SA Curricula Instantiations LEIC
sup

SA
sup

<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,PAC)(TFC2,GF)>:22 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,Econ)(TFC2,GF)>:33 2.5% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,Econ)(TFC2,IG)>:28 2% 7%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1)(TFC2,GF,IG)>:33 2.5% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,PAC)(TFC2)>:22 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GF)>:32 2% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GCP)>:19 1% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GEC)>:23 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,ARGE)>:18 1% 4%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,TE1)(TFC2)>:29 2% 7%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1,Econ)(TFC2)>:21 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1)(TFC2,GF)>:44 3% 10%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1)(TFC2,IG)>:27 1,5% 6%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TE1)(GEC)>:15 1% 4%

PSI

<(M,AD,IHM,PC)(AA,SoD,EP)(TFC1)(TFC2,TE2)>:15 1% 4%
<(M,AD,PAC,Rob)(EP,SDAI,SFF)(TFC1)(TFC2,IG)>:15 1% 8%
<(M,AD,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,IHM)(TFC2,GF)>:18 1% 10%
<(M,AD,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,Econ)(TFC2,GF)>:18 1% 10%
<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,G)(TFC2)>:17 1% 10%

IIN

<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,TE1)(TFC2)>:18 1% 10%
<(IHM,Rac,LN)(SP,V,PA,SR)(TFC1,TE1)(TFC2)>:15 1% 10% IAR
<(IHM,A,Rac,LN)(SP,V,PA,SR)(TFC1)(TFC2,GF)>:17 1% 10%
<(C)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:23 1.5% 8%
<(Elect)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:27 1.5% 10% SCO
<(RC1)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:19 1% 7%

Given that the application of unconstrained sequential pattern mining algorithms
found 5866 patterns in this dataset (for 20% of support, since we were not able to try
lower supports due the memory requirements), and we want to find the sequence of
subjects followed by IAR students, the use of constrained or unconstrained sequential
pattern mining does not help in the search for an answer to the second question.

However, if we use the proposed methodology, we have two alternatives: using a
DFA specifying the IAR model curriculum and an Approx relaxation as above, or
using a DFA specifying PSI and SCO curricula models and a Non-Accepted
relaxation with a restricted alphabet.

The patterns discovered by the second alternative (using a minimum support
threshold equal to 2.5%) answer the question. (Table 5 shows the discovered patterns,
excluding 8 patterns that are shared by PSI students.)

Note that we were not able to find the entire model curriculum for Artificial
Intelligence, because of the reduced number of students that have concluded each
subject on the first enrollment. This fact, explains the number of discovered patterns
(24). However, it is smaller than the number of patterns discovered with an
unconstrained approach, confirming our claim about constraint relaxations.

The Non-Accepted relaxation was defined using a constraint similar to the previous
one with the DFA represented in Fig. 5 without the model curriculum for IAR and IIN.
Additionally, the relaxation alphabet was composed of all the common subjects and the
advanced subjects specific to the Artificial Intelligence specialty area (38 subjects).

 Constraint Relaxations for Discovering Unknown Sequential Patterns 29

Table 5. Artificial Intelligence frequent curricula

Patterns on Artificial Intelligence

(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP,PA) (FA,TAI)(AD,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR) (FA)(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP)

(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,SR) (FA)(AD,FL,P)(RC)(IHM,A,R,LN)(SP,PA)

(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(V,PA,SR) (TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(AD,FL,P)(RC,LP)(IHM,R,LN)(SP,V,PA,SR) (TAI)(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA)

(FA,TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,SR) (TAI)(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)

(FA,TAI)(AD,FL)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR (TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(AD,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA,SR) (FA,TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)

4.2 Efficiency Evaluation

Next, the efficiency of constrained and unconstrained sequential pattern mining are
compared, we assessing the efficiency of the usage of the different constraint
relaxations.

Comparison Between Constrained and Unconstrained Mining. To compare the
efficiency of constrained and unconstrained sequential pattern mining, we compare
the time spent by constrained and unconstrained mining, using deterministic finite
automata and deterministic and non-deterministic pushdown automata that discover a
similar number of patterns (they differ on one or two patterns). (The DFA used in this
comparison accepts the curricula on MTP and ASO scientific areas, of students that
have failed at most once per subject. The ePDA used is the one shown in Fig. 6. The
nPDA used accepts sequences in each scientific area that mimic the sequence of
subjects attended by students, including the possibility of failure in the first two
subjects of each scientific area.)

PerformancevsSupport

0

1

1

2

2

3

3

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

T
im

e
 (s

)

Unconstrained DFA PDA nPDA

Average Time Spent for Each Pattern

0

50

100

150

200

250

300

350

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

T
im

e
(m

s)

Unconstrained DFA PDA nPDA

Fig. 8. Performance (on the left) and average time spent for each pattern (on the right), using
different types of content constraints

It is interesting to note that the use of context-free languages implies a considerable
increase on the time spent for each pattern. In fact, the time spent for each pattern
may be five times slower than for unconstrained mining, and two times slower than
for constrained mining with regular languages (see Fig. 8-right). The time spent for
each pattern decreases with the number of discovered patterns, which is due to the

30 C. Antunes and A.L. Oliveira

decrease of the percentage of discarded sequences, the sequences that are not frequent
and accepted by the constraint.

Evaluation of Constraint Relaxations. In general, mining with conservative
relaxations is as efficient as mining with the entire constraint. However, the average
time spent per discovered pattern is lower (Fig. 9). The results were obtained with the
constraint based on the ePDA in Fig. 6.

Naturally, Non-Accepted and Approx relaxations spent much more time than the
other relaxations, but this difference is mostly due to the number of patterns they
discover.

It is important to note that mining with Non-accepted and Approx relaxations can
be less efficient than unconstrained mining. This happens when the number of
patterns discovered by these relaxations is similar to the number of discovered
unconstrained patterns, as is usual for Non-accepted relaxations with a very restrictive
constraint (as the ones used in this chapter).

As Fig. 9– right shows Approx relaxations are the most expensive per discovered
pattern. In fact, even when the number of discovered patterns is considerably lower
than the number of unconstrained patterns, it is possible that Approx relaxations spend
more time than unconstrained mining.

PerformancevsSupport

0

10

20

30

40

50

60

70

80

90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Accepted Pref ix Legal
Approx Non-Acc Unconstrained

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

1400

1600

1800

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Acc Prefix Legal
Approx Non-Acc Unconst.

Fig. 9. Performance (on the left) and average time spent for each pattern (on the right), using
different constraint relaxations

Approx Variants. When applied with a restricted alphabet Approx relaxations may
present better performances.

Even when non-deterministic pushdown automata are used, approx relaxation
outperforms unconstrained mining in the generality of situations, as shown in Fig. 10.
These results were achieved using the constraint defined over the ePDA in Fig. 6, and
restricting the items to failures.

Non-accepted Variants. The results achieved with non-accepted relaxations are
similar. When combined with an item constraint, it can reduce the number of patterns
that it discovers. For example, due to the memory requirements of the large number of
discovered patterns, it was not possible to discover unconstrained and non-accepted
patterns for supports below 25%.

 Constraint Relaxations for Discovering Unknown Sequential Patterns 31

Nr. of Patterns

0

50

100

150

200

250

300

350

65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

Unconstrained Full Approx w/ Reprovals

PerformancevsSupport

0

10

20

30

40

50

60

70

80

90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

Unconstrained Full Approx w/ Reprovals

Fig. 10. Number of discovered patterns (on the left) and performance (on the right), using
approx variants

Nr. of Patterns 5866

0

500

1000

1500

2000

2500

3000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

N
r.

 o
f

P
at

te
rn

s

Unconstrained Full Non-Acc Non-Acc

PerformancevsSupport

0

200

400

600

800

1000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Unconstrained Full Non-Acc Non-Acc

Fig. 11. Number of discovered patterns (on the left) and performance (on the right), using Non-
accepted variants

However, with items restricted to the subjects exclusive to Artificial Intelligence
(as in section Finding Artificial Intelligence Curricula) it is possible to discover part
of the non-accepted patterns, in an acceptable time. Fig. 11 shows the number of
discovered patterns (on the left) and the corresponding performance (on the right),
with the same constraint with an alphabet composed of the subjects exclusive to IAR
specialty area.

5 Conclusions

In this paper, we show that the use of constraint relaxations enables the discovery of
novel information, centered on user expectations, when mining sequential patterns.
This is achieved since relaxations enable the mining process to discover patterns that
are not directly inferred from the background knowledge represented in the system.

Experimental results show that the use of relaxations reduces the number of
discovered patterns when compared to unconstrained processes, but enables the
discovery of unexpected patterns, when compared to constrained processes.

The experiments reported in the case study show that the use of relaxations is of
great help when a precise knowledge about the behaviors in analysis is not available,
but can be of particular interest when there is an accurate knowledge about the models
behind the data. In fact, the success of the use of Non-Accepted relaxation is
conditioned by the existence of this knowledge, since it represents the only way to
find some specific but interesting patterns.

32 C. Antunes and A.L. Oliveira

Finally experiments have also shown that the ability to deal with errors is a real
advantage, which makes possible the discovery of unknown patterns that are similar
to accepted ones (as defined by a constraint), giving the user the ability to choose the
level of similarity, by defining the number of errors accepted.

One important challenge created by this work, is to apply this methodology to the
extraction of intra-transactional patterns, where there are no constraints to specify the
structure of the transactions. Indeed, the definition of the corresponding relaxations
would contribute to guide the traditional pattern mining processes, which may
contribute to reduce the number of discovered patterns, and, consequently, to focus
the process on user expectations.

References

1. Antunes, C. and Oliveira, A.L., "Inference of Sequential Association Rules Guided by
Context-Free Grammars", in Int. Conf. Grammatical Inference, Springer (2002) 1-13

2. Antunes, C. and Oliveira, A.L., "Sequential Pattern Mining with Approximated
Constraints", Int. Conf Applied Computing, IADIS (2004) 131-138

3. Garofalakis, M., Rastogi, R. and Shim, K., “SPIRIT: Sequential Pattern Mining with
Regular Expression Constraint”, in Int. Conf. Very Large Databases, Morgan Kaufmann
(1999) 223-234,

4. Hilderman, R and Hamilton, H., "Knowledge discovery and interestingness measures: a
survey", Technical Report CS 99-04, Dep. Computer Science, University of Regina, 1999.

5. Hipp, J. and Güntzer, U., "Is pushing constraints deeply into the mining algorithms really
what we want?". SIGKDD Explorations, vol. 4, no. 1, ACM (2002) 50-55

6. Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and
Computation. Addison Wesley. 1979.

7. Kum, H.-C., Pei, J., Wang, W. and Duncan, D., "ApproxMAP: Approximate Mining of
Consensus Sequential Patterns", in Int. Conf on Data Mining, IEEE (2003).

8. Levenshtein, V., "Binary Codes capable of correcting spurious insertions and deletions of
ones", in Problems of Information Transmission, 1, Kluwer (1965) 8-17

9. Pei J, Han J et al: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth”, in Int. Conf Data Engineering, IEEE (2001), 215-226

10. Pei, J., Han, J. and Wang, W., "Mining Sequential Patterns with Constraints in Large
Databases", in Conf Information and Knowledge Management, ACM (2002) 18-25

11. Srikant R, Agrawal R.: “Mining Sequential Patterns: Generalizations and Performance
Improvements”, in Int. Conf Extending Database Technology, Springer (1996) 3-17

12. Srikant R, Agrawal R, "Mining association rules with item constraints" in Int. Conf.
Knowledge Discovery and Data Mining, ACM (1997) 67-73

13. Zaki, M.“Efficient Enumeration of Frequent Sequences”, in Int. Conf. Information and
Knowledge Management, ACM (1998) 68-75

Mining Formal Concepts with a Bounded
Number of Exceptions from Transactional Data

Jérémy Besson1,2, Céline Robardet3, and Jean-François Boulicaut1

1 INSA Lyon, LIRIS CNRS FRE 2672, F-69621 Villeurbanne cedex, France
2 UMR INRA/INSERM 1235, F-69372 Lyon cedex 08, France
3 INSA Lyon, PRISMA, F-69621 Villeurbanne cedex, France

{Jeremy.Besson, Celine.Robardet, Jean-Francois.Boulicaut}@insa-lyon.fr

Abstract. We are designing new data mining techniques on boolean
contexts to identify a priori interesting bi-sets (i.e., sets of objects or
transactions associated to sets of attributes or items). A typical impor-
tant case concerns formal concept mining (i.e., maximal rectangles of true
values or associated closed sets by means of the so-called Galois connec-
tion). It has been applied with some success to, e.g., gene expression
data analysis where objects denote biological situations and attributes
denote gene expression properties. However in such real-life application
domains, it turns out that the Galois association is a too strong one when
considering intrinsically noisy data. It is clear that strong associations
that would however accept a bounded number of exceptions would be
extremely useful. We study the new pattern domain of α/β concepts,
i.e., consistent maximal bi-sets with less than α false values per row and
less than β false values per column. We provide a complete algorithm
that computes all the α/β concepts based on the generation of concept
unions pruned thanks to anti-monotonic constraints. An experimental
validation on synthetic data is given. It illustrates that more relevant
associations can be discovered in noisy data. We also discuss a practical
application in molecular biology that illustrates an incomplete but quite
useful extraction when all the concepts that are needed beforehand can
not be discovered.

1 Introduction

One of the most popular data mining techniques concerns transactional data
analysis by means of set patterns. Transactional data can be represented as
boolean matrices. The lines denotes transactions or objects and the columns are
boolean attributes that enable to record item occurrences within transactions
or properties of objects. For instance, in the toy example r1 from Figure 1,
object o2 satisfies properties i1 and i2 or, alternatively, transaction o2 contains
items i1 and i2. Many application domains can lead to such boolean contexts.
For instance, beside the classical basket analysis problem where transactions
denote the items purchased by some customers, we made many experiments
on boolean gene expression data sets that encode gene expression properties in

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 33–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 J. Besson, C. Robardet, and J.-F. Boulicaut

Items
i1 i2 i3

o1 1 1 1
o2 1 1 0
o3 1 0 1
o4 1 0 0
o5 0 1 0

Fig. 1. A boolean context r1

some biological situations (see, e.g., [4]). In this kind of application, the raw
data is a collection of numerical values that quantify the activity of each gene in
each studied situation. Gene expression properties, for instance over-expression,
are then computed by means of discretization techniques (see, e.g., [1, 14]). For
example, given r1, we might say that all the studied genes are considered over-
expressed in situation o1.

Given eventually huge transactional data sets, hundreds of research papers
have considered the efficient computation of a priori interesting association rules
from the so-called frequent sets of attributes. Also, the multiple uses of (fre-
quent) closed sets of transactions and/or attributes have been studied a lot. In
this paper, we consider bi-set mining from transactional data. More precisely, we
want to compute sets of objects T and sets of attributes G that are strongly as-
sociated within the data. An interesting case concerns formal concept discovery,
i.e., the computation of maximal rectangles of true values [20]. For instance, in
r1, ({o1, o2}, {i1, i2}) is a formal concept or concept for short. In boolean gene
expression data sets, concepts can be considered as putative transcription mod-
ules, i.e., maximal sets of genes that are co-regulated associated to the maximal
set of situations in which they are co-regulated. Their discovery is an impor-
tant step towards the understanding of gene regulation networks. It is the major
application domain which motivates our research.

Collections of concepts can be used, e.g., for conceptual clustering or as con-
densed representations for association rules. Efficient algorithms enable to com-
pute concepts [8, 2, 11]. When the extraction task is too hard, it is also possible
to compute concepts under constraints. It can be based on (frequent) closed set
computation (see, e.g., [12, 5, 13, 21, 6, 7, 16] and [10] for a recent survey). It is
also possible to use an algorithm that directly mine concepts under constraints
on both set components [3].

The aim of concept extraction is to identify objects and properties which
are strongly associated. Within a concept, we have a maximal set of objects
(i.e., a closed set) which are in relation with all the elements of a maximal
set of properties and vice versa. This degree of association is often too strong
in real-life data. This is typical in life sciences where we can not avoid er-
ror of measurement or when discretization methods are used and can easily
lead to some wrong values. Indeed, once a discretization threshold has been
computed (say 34.5) for deciding about the over-expression of a given gene,
assigning false (and thus not over-expression) for a situation whose raw ex-

Mining Formal Concepts with a Bounded Number of Exceptions 35

pression value is 34 might be or not an error. What is clear, is that con-
cepts that would accept exceptions could be extremely useful. Assume that in
a boolean context, we have a bi-set (T,G) (with, e.g., |T | = 12 and |G| = 25)
such that each property from G is not shared by at most one object from T
and each object from T does not have at most two properties from G. Our
thesis is that it is extremely useful to extract such a bi-set for further post-
processing by data owners. Indeed the presence of erroneous false values in the
data set leads to the multiplication of concepts from which it might be hard
to identify the relevant associations. As an illustration, in Figure 1, the bi-
set ({o1, o2, o3}, {i1, i2, i3}) is not a concept but has at most 1 false value per
row and at most 1 false value per column. It appears to be the union of 4
concepts which are ({o1}, {i1, i2, i3}), ({o1, o2, o3}, {i1}), ({o1, o2}, {i1, i2}), and
({o1, o3}, {i1, i3}).

Therefore, the contribution of this paper is to propose a new kind of patterns
called the α/β concepts, i.e., concepts with exceptions or, more precisely, maxi-
mal consistent bi-sets of true values with a bounded number of false values per
row (α threshold) and per column (β threshold). Therefore, we specify the de-
sired patterns within a constraint-based mining framework. The constraint Cαβ

is used to enforce a bounded number of exceptions. The consistency constraint
denoted Ccons is important: only relevant patterns such that there is no row (resp.
column) outside the bi-set which is identical to an inside one w.r.t. the bi-set
columns (resp. rows) have to be mined. Finally, we also use maximality con-
straints (denoted Cmax) w.r.t. the collections specified by the other constraints
and our specialization relation on bi-sets. We studied how to compute α/β con-
cepts. This is indeed a difficult problem since we loose the Galois connection
properties in this new setting. Our main theoretical result concerns the formal-
ization of a constraint-based mining framework that can be used for computing
every α/β concept. For that purpose, we start by computing every concept and
then we perform unions of concepts while “pushing” the constraints Cαβ , Ccons,
and Cmax to reduce the search space. Doing so, the complete collection of α/β
concepts can be computed. We provide two experimental validations. First, we
consider a synthetic data set. This data set consists of some formal concepts
and uniform random noise. We show that α/β concept mining enables to dis-
cover the original associations (i.e., the concepts that were existing before noise
introduction) provided that the noise is not too important. Then, we discuss a
practical application in molecular biology. It illustrates an incomplete but quite
useful extraction when all the α/β concepts can not be discovered: instead of
computing the whole collection of α/β concepts we compute a subset of them
obtained from large enough concept unions. By this application we demonstrate
that large α/β concepts can be computed that contain a rather small number of
exceptions.

The paper is organized as follows. In Section 2, we provide the needed defini-
tions and the formalization of the α/β concept mining task. Section 3 sketches
the algorithm and discusses its properties. Section 4 concerns the experimental
validation of our approach. Finally, Section 5 is a short conclusion.

36 J. Besson, C. Robardet, and J.-F. Boulicaut

2 Formalizing α/β Concept Mining

Let O denotes a set of objects and P denotes a set of properties. The transac-
tional data or boolean context is r ⊆ O×P. (oi, ij) ∈ r denotes that property j
holds for object i. A bi-set is an element of L = LO × LP where LO = 2O and
LP = 2P .

Definition 1 (1-Rectangle). A bi-set (T,G) is a 1-rectangle in r iff ∀t ∈ T
and ∀g ∈ G then (t, g) ∈ r. We say that it satisfies constraint C1R(T,G). When
a bi-set (T,G) is not a 1-rectangle, we say that it contains 0 values.

Definition 2 (Concept). A bi-set (T,G) is a concept in r iff (T,G) is a 1-
rectangle and ∀T ′ ⊆ O\T, (T ∪ T ′, G) is not a 1-rectangle and ∀G′ ⊆ P\G,
(T,G ∪G′) is not a 1-rectangle. A concept (T,G) is thus a maximal 1-rectangle.

Example 1. ({o1}, {i1, i3}) is a 1-rectangle in r1 but it is not a concept. An
example of a concept in r1 is ({o1, o3}, {i1, i3}).

By construction, concepts are built on two so-called closed sets that are as-
sociated by the Galois connection.

Definition 3 (Galois Connection [20]). If T ⊆ O and G ⊆ P, assume
φ(T, r) = {i ∈ P | ∀o ∈ T, (o, i) ∈ r} and ψ(G, r) = {o ∈ O | ∀i ∈ G, (o, i) ∈ r}.
φ provides the set of items that are common to a set of objects and ψ provides the
set of objects that share a set of items. (φ, ψ) is the so-called Galois connection
between O and P. We use the classical notations h = φ ◦ ψ and h′ = ψ ◦ φ to
denote the Galois closure operators. A set T ⊆ O (resp. G ⊆ P) is said closed
iff T = h′(T) (resp. G = h(G)).

An important property of the Galois connection is that each closed set on one
dimension is associated to a unique closed set on the other dimension. It explains
why any algorithm that computes closed sets can be used for concept extraction
(see, e.g., [16] for a discussion when using a frequent closed set computation
algorithm in the context of gene expression data analysis).

Example 2. ({o1, o2}, {i1, i2}) is a concept in r1. We have h({i1, i2}) = {i1, i2},
h′({o1, o2}) = {o1, o2}, φ({o1, o2}) = {i1, i2}, and ψ({i1, i2}) = {o1, o2}.

Many algorithms like AC-Miner1 [6], CHARM [21] and CLOSET+ [19]
extract frequent closed sets and thus very easily concepts under a minimal fre-
quency constraint on the set of objects by an application of one of the Galois
operators. This user-defined minimal frequency constraint enables to optimize
the extraction tasks in dense and/or highly correlated data sets: both the search

1 Even though this algorithm has been designed for the extraction of frequent δ-free
sets, we often use the formal property which states that every frequent closed set
is the closure of a 0-free set. In other terms, a straightforward postprocessing on
AC-Miner output can provide every frequent closed set.

Mining Formal Concepts with a Bounded Number of Exceptions 37

space and the solution space can be reduced. In practice, we can have however
too large or too dense matrices (see, e.g., the case of some biological contexts
in Section 4.2) such that only very high minimal frequency thresholds can lead
to tractable computations. Assuming a standard boolean context, it means that
only bi-sets composed of few items and many objects can be extracted whereas
we would like to enforce other constraints. To overcome this problem, we have
proposed in [3] the algorithm D-Miner which enables to extract formal concepts
while “pushing” other meaningful constraints.

Definition 4 (Meaningful Constraints on Concepts).
Minimal size constraints: a concept (T,G) satisfies the constraint

Cms(r, σ1, σ2, (T,G)) iff |T | ≥ σ1 and |G| ≥ σ2.
Syntactical constraints: a concept (T,G) satisfies the constraint

CInclusion(r, X, Y, (T,G)) iff X ⊆ T and Y ⊆ G.
Minimal area constraint: a concept (T,G) satisfies the constraint

Carea(r, σ, (T,G)) iff |T | × |G| ≥ σ.

More precisely, D-Miner extract efficiently formal concepts which moreover
satisfy some monotonic constraints w.r.t. the following specialization relation.

Definition 5 (Specialization Relation). Our specialization relation on bi-
sets from LO × LP is defined by (T1, G1)
 (T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2.
As usual, ≺ is used to denote strict specialization (i.e., using ⊂ instead of ⊆).

Definition 6 (Monotonic Constraints on Bi-sets). Given L a collection
of bi-sets, a constraint C is said monotonic w.r.t. ⊆ iff ∀α, β ∈ L such that
α ⊆ β, C(α) ⇒ C(β).

Example 3. The three previously defined constraints are examples of mono-
tonic constraints w.r.t. our specialization relation. The concepts (T,G) satisfying
Cms(r1, 2, 2, (T,G)) are ({o1, o2}, {i1, i2}) and ({o1, o3}, {i1, i3}). The concepts
(T,G) satisfying Carea(r1, 4, (T,G)) are ({o1, o2}, {i1, i2}), ({o1, o3}, {i1, i3}) and
({o1, o2, o3, o4}, {i1}).

A concept (T,G) is such that all its items and objects are in relation. Thus,
the absence of relation between an item g and an object t leads to two concepts,
one with g and without t, and another one with t and without g. D-Miner is
based on this observation and it builds simultaneously the closed sets of objects
and items starting from the bi-set corresponding to the whole sets of items and
objects, recursively cutting it using 0 values [3].

Notice that pushing the monotonic constraint Carea within D-Miner is a
solution to one of the problems addressed in [9].

The aim of concept extraction is to gather properties and objects which
are strongly associated. On another hand, we already motivated the interest of
relaxing the maximal 1-rectangle constraint. A simple idea is to consider all the
maximal bi-sets with less than α false values per row and less than β false values
per column.

38 J. Besson, C. Robardet, and J.-F. Boulicaut

Definition 7 (αβ-Constraint). A bi-set (T,G) satisfies Cαβ in r iff
∀o ∈ T, |{i ∈ G such that (o, i) �∈ r}| ≤ min(β, |G| − 1) and
∀i ∈ G, |{o ∈ T such that (o, i) �∈ r}| ≤ min(α, |T | − 1).

Example 4. Given r1 and α = β = 1, the two bi-sets ({o1, o2, o3}, {i1, i2})
and ({o1, o2, o4}, {i1, i2}) satisfy the αβ-constraint. However, o3 and o4 have
the same values on i1 and i2. It turns out that these objects can not be added
simultaneously on ({o1, o2}, {i1, i2}) in order to satisfy Cαβ.

To ensure consistency and avoid this problem, we decided either to add all
identical properties (w.r.t. the set of objects) or all identical objects (w.r.t. the
set of properties) in the bi-set when Cαβ is satisfied, or to exclude all of them
when it is not the case. As for concepts, α/β concepts can differ from each other
either on the object component or on the property component. This is formalized
by the use of the consistency constraint denoted Ccons.

Definition 8 (Consistency Constraint). A bi-set (T,G) satisfies Ccons iff

– ∀i ∈ G, � ∃j ∈ P \G such that ψ(i) ∩ T = ψ(j) ∩ T
– ∀o ∈ T, � ∃w ∈ O \ T such that φ(o) ∩G = φ(w) ∩G

On our way to the extraction of bi-sets with few 0 values, it is interesting to
reformulate the definition of formal concepts.

Definition 9 (Maximality Constraint). A bi-set (T,G) is maximal w.r.t. a
constraint C and is said to satisfy Cmax|C(T,G) iff � ∃(T ′, G′) such that C(T ′, G′)∧
(T,G) ≺ (T ′, G′).

Definition 10 (New Definition of Formal Concepts). A bi-set (T,G) is a
formal concept iff

– (T,G) satisfies C1R

– (T,G) is maximal w.r.t. C1R, i.e., (T,G) satisfies Cmax|C1R
.

Notice that by construction, a concept satisfies the constraint Ccons. Let us
now define α/β concepts.

Definition 11 (α/β Concept). A bi-set (T,G) is an α/β concept iff

– (T,G) satisfies Cαβ

– (T,G) satisfies Ccons

– (T,G) is maximal w.r.t. Cαβ ∧ Ccons, i.e., (T,G) satisfies Cmax|Cαβ∧Ccons
.

Let us notice that, looking for an α/β concept (T,G), it makes sense that |T | � α
and |G| � β. The αβ-constraint is an extension of the 1-rectangle constraint
for bi-sets with 0 values. Then, α/β concepts appear to be a simple extension
of concepts by changing the 1-rectangle constraint into the αβ-constraint in
conjunction with the Ccons constraint. This is one of the important results of
this work.

Example 5. ({o1, o2, o3}, {i1, i2, i3}) is an α/β concept in r1. ({o1, o2}, ∅) and
({o3, o4, o5}, {i1, i2}) are not α/β concepts because they do not satisfy respectively
Cmax|Ccons∧Cαβ

and Cαβ constraints.

Mining Formal Concepts with a Bounded Number of Exceptions 39

3 Mining α/β Concepts

The computation of every α/β concept from a given data set r is done in two
steps. First, we compute all the concepts, i.e., a collection denoted K. Then we
search the maximal (w.r.t. a specialization relation on bi-sets) unions of concepts
which satisfy the αβ-constraint Cαβ .

Definition 12 (Union of Bi-sets). Let B1 = (T1, G1) and B2 = (T2, G2) be
two bi-sets from LO×LP . The union of B1 and B2 is B1�B2 = (T1 ∪ T2, G1 ∪G2).
It can be applied on concepts that are special cases of bi-sets. By construction,
unions of concepts are not concepts.

Theorem 1. Let U = {⊔i∈K′ i | Cαβ and K′ ⊆ K} where K is the collection of
concepts, the collection of α/β concepts is equal to

Kαβ = {s ∈ U |� ∃s′ ∈ U s
 s′}
Proof. We show that the collection of bi-sets which satisfy Ccons (Kcons) is equal
to the collection of the unions of concepts (K�). In other terms, the use of unions
enforce the Ccons constraint.

– K� ⊆ Kcons

Let (X, Y) be an element of K�. Let us assume that ¬Ccons(X, Y). We con-
sider j ∈ P \ Y such that ∃i ∈ Y, ψ(i) ∩ X = ψ(j) ∩ X. It exists at least
one concept (L, C) ∈ K such that (L, C)
 (X, Y) and i ∈ C ((X, Y) is a
union of concepts). However, ∀� ∈ L, (�, i) ∈ r and L ⊆ ψ(j), thus (�, j) ∈ r.
Consequently, as (L, C) is a concept, j ∈ C ⊆ Y . We have a contradiction
and Ccons is satisfied.
Reciprocally, we consider w ∈ O\X such that ∃v ∈ X, φ(v)∩Y = φ(w)∩Y .
It exists at least one concept (L, C) ∈ K such that (L, C)
 (X, Y) and v ∈ L
((X, Y) is a union of concepts). However, ∀c ∈ C, (v, c) ∈ r and C ⊆ φ(w),
thus (w, c) ∈ r. Consequently, as (L, C) is a concept, w ∈ L ⊆ X. We have
a contradiction and thus Ccons is satisfied.

– Kcons ⊆ K�
Let (X, Y) be a bi-set which satisfy Ccons. ∀i ∈ Y, ψ(i) ∩X �= ∅ and � ∃j ∈
P \ Y such that ψ(i) ∩ X = ψ(j) ∩ X consequently φ(ψ(i) ∩ X) ⊆ Y . As
ψ(i) ∩ X ⊆ ψ(i) and φ is a decreasing operator, φ(ψ(i)) ⊆ φ(ψ(i) ∩ X)
consequently φ(ψ(i)) ⊆ Y .
On the other side, ψ(i) ∩ X �= ∅. Let v ∈ ψ(i) ∩ X. It does not exist w ∈
O \ψ(i)∩X such that φ(v)∩ Y = φ(w)∩ Y consequently ψ(φ(v)∩ Y) ⊆ X.
As φ(v) ∩ Y ⊆ φ(v) and ψ is a decreasing operator, ψ(φ(v)) ⊆ ψ(φ(v) ∩ Y)
consequently ψ(φ(v)) ⊆ X.
We can conclude that for each (v, i) ∈ (X, Y) and (v, i) ∈ r, it exists a
concept (ψ(φ(v)), φ(ψ(i)) included in (X, Y). (X, Y) is the union of these
concepts and thus belongs to C�.

It means that we can compute α/β concepts by generating the unions of
concepts which satisfy Cαβ and Cmax|Cαβ

.

40 J. Besson, C. Robardet, and J.-F. Boulicaut

C5C4C1 C3

C1C2 C1C3 C1C4 C1C5 C2C3 C2C4 C2C5 C3C4 C3C5 C4C5

C1C2C3

C2

Fig. 2. Search space of α/β concepts (α = β = 1) in context r1

Property 1. Cαβ is anti-monotonic w.r.t. our specialization relation on bi-sets.

Consequently, when considering candidate unions of concepts, we can use
the anti-monotonicity of Cαβ to prune the search space. It is also possible to
push Cmax|Cαβ

to prune the search space. This can be done by adapting known
efficient algorithms which compute maximal frequent sets (see, e.g., [10] for a
recent survey), where sets are sets of concepts and the anti-monotonic minimal
frequency constraint is replaced by the Cαβ constraint.

Given K the collection of formal concepts and two parameters α and β,
we compute the following collection of sets of concepts {ϕ ∈ 2K | Cαβ(ϕ) ∧
Cmax|Cαβ

(ϕ) is satisfied}.
The concepts in r1 are:

c1 = ({o1}, {i1, i2, i3}) c2 = ({o1, o2}, {i1, i2})
c3 = ({o1, o3}, {i1, i3}) c4 = ({o1, o2, o5}, {i2})

c5 = ({o1, o2, o3, o4}, {i1})
We consider the search for α/β concepts in r1 when α = 1 and β = 1.
Figure 2 illustrates how the collection of 1/1 concepts are extracted from r1:

it provides {{c1, c2, c3}, {c2, c4}, {c5}}. The circled elements form the solution
space. Stripped elements do not satisfy Cαβ . Their supersets are not generated.
The three α/β concepts are here c1∪c2∪c3, c2∪c4, and c5. They correspond re-
spectively to the following bi-sets: ({o1, o2, o3}, {i1, i2, i3}), ({o1, o2, o5}, {i1, i2})
and ({o1, o2, o3, o4}, {i1}).

4 Experimentation

4.1 Synthetic Data

To show the relevancy of α/β concept mining in noisy data, we first designed
a synthetic data set. Our goal was to show that α/β concept mining enables
to discover concepts that have been introduced before the introduction of some
noise. Therefore, we have built a boolean data set made of 20 non-overlapping
concepts containing each 5 items and 5 objects. Secondly, we introduced a uni-
form random noise by modifying with the same probability (5% in Figure 3 top

Mining Formal Concepts with a Bounded Number of Exceptions 41

 0

 50

 100

 150

 200

 250

 1 2 3 4 5

alpha = 0, beta = 0
alpha = 1, beta = 1
alpha = 1, beta = 2
alpha = 2, beta = 1

 0

 50

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4 4.5 5

alpha = 0, beta = 0
alpha = 1, beta = 1
alpha = 1, beta = 2
alpha = 2, beta = 1

Fig. 3. Number of α/β concepts with respect to their size (both dimensions greater or
equal than the X-coordinate value) with 5% (top) and 10% (bottom) of noise

and 10% in Figure 3 bottom) some of the boolean values (i.e., transforming some
true values into false values and vice versa). We produced 10 data sets (with 100
lines and 100 columns) for each noise probability. When considering first concept
mining phase, we extracted between 169 and 225 concepts (resp. between 289
and 373 concepts) in the 5% noise data sets (resp. in the 10% noise data sets).
Figure 3 provides the average and standard deviation of the number of α/β
concepts (Y-coordinate) w.r.t. their minimal number of objects and properties
(X-coordinate). Each curve stands for a different value of α and β between 0
and 2. For example, on Figure 3 bottom, we have 126 α/β concepts in average
with at least 3 objects and 3 items when α = 2 and β = 1.

On the data sets with 5% noise, we have in average 196 concepts (see the
curve with α = β = 0) among which 48 have at least 3 properties and objects and
5 of them have at least 5 properties and objects. With 10% of noise, we got 317
concepts in average among which 60 have at least 3 properties and objects and

42 J. Besson, C. Robardet, and J.-F. Boulicaut

2 of them have at least 5 properties and objects. In this extracted collection of
concepts, it is difficult to find the 20 original concepts that were occurring before
noise introduction. When α and β are not null, the collection of extracted α/β
concepts is roughly speaking the 20 original concepts. For example, considering
α = β = 1, we got 20.2 (resp. 22.1) α/β concepts of size greater than 4 in the 5%
(resp. the 10%) noise data set. Even when the percentage of noise increases, the
collection of α/β concepts has “captured” the embedded concepts. Nevertheless,
the number of α/β concepts can increase with α or β. A lot of α/β concepts
with a number of objects close to α and a number of properties close to β leads
to the computation of many unions. However, when several unions have been
performed, it is more and more difficult to merge concepts. α/β concepts whose
the minimal number of lines and columns is large w.r.t. α and β are dense in
terms of true values and considered relevant. In other terms, it is interesting
not to consider small α/β concepts (w.r.t. α and β) and thus eliminate lots of
meaningless α/β concepts.

4.2 Post-processing an Incomplete Collection of Concepts on Real
Gene Expression Data

In many real data sets, it is not possible to extract the whole collection of
concepts. In these cases, additional constraints can be pushed deeply into the
concept extraction algorithms like, for instance, enforcing a minimal size for both
set components when using our D-Miner algorithm [3, 4]. We could also limit
the search to the so-called frequent concepts which use such a constraint on only
one set component (see, e.g., [18, 15]).

Even in the case where we can not have the whole collection of concepts K,
we can still extract α/β concepts from a subset of K. Doing so, we compute more
relevant patterns as a post-processing of some concepts.

A concrete application concerns the analysis of gene expression profiles in
Type 2 diabetes disease. As we already pointed out, molecular biologists are
interested in discovering putative transcription modules, i.e. sets of genes that are
co-regulated and the associated sets of situations where this co-regulation occurs.
In the following experiment, situations corresponds to transcription factors, i.e.
biological objects which are known to activate or repress the genes. We derived
a boolean data set from the data in [17]. It contains 350 genes (in rows) which
are in relation with some transcription factors (150 columns) known to regulate
(activate or repress) them. This data set is dense since 17% of the values are
true values.

We are interested in large α/β concepts that associate many genes to many
transcription factors. We were not able to extract the collection of α/β concepts
from the whole collection of concepts (more than 5 millions). We decided to look
at the merging of large concepts containing at least 25 genes and 10 transcrip-
tion factors. Using D-Miner, we extracted 1 699 concepts satisfying these size
constraints. Then we computed the collections of α/β concepts with small α and
β values. Table 1 provides the number of α/β concepts (for 4 values of αβ) per
number of merged concepts.

Mining Formal Concepts with a Bounded Number of Exceptions 43

Table 1. Number of α/β concepts produces by the union of n concepts

n α = β = 1 α = β = 2 α = β = 3 α = β = 4
1 1450 1217 927 639
2 54 49 61 95
3 31 57 75 73
4 8 40 50 64
5 2 8 25 58
6 1 3 11 29
7 0 0 6 11
8 0 0 1 12
9 0 0 0 2
10 0 0 1 6
11 0 0 0 0
12 0 0 0 3
13 0 0 0 1
14 0 0 1 0
15 0 0 0 1

Total 1546 1374 1158 994

Table 2. α/β concept (36×12) resulting from the union of 15 concepts with α = β = 4
(number of false values for each transcription factor of the α/β concept)

Number of false values
0
0
0
1
3
2
0
3
0
3
4
0

Interestingly, even though we merged only large concepts with small α and β
values, large α/β concepts have appeared. For example, at most 6 concepts are
merged when α = β = 1 whereas 15 concepts are merged when α = β = 4. In
this data set, we have large bi-sets with few 0 values. Typically, the α/β concept
(α = β = 4) resulting from the merge of 15 concepts is made of 36 genes and 12
transcription factors and contains only 3.7% of false values (see Table 2 where
each line stands for a transcription factor and the value is the number of false
values in the α/β concept).

The 12 transcription factors of this α/β concept have been checked as re-
ally similar with respect to the genes which are associated. It seems useful for
biologists to consider such α/β concepts with very few exceptions instead of
post-processing by themselves huge collections of concepts.

44 J. Besson, C. Robardet, and J.-F. Boulicaut

5 Conclusion

We have considered the challenging problem of computing formal concepts with
exceptions from transactional data sets. This is extremely important in many
application domains where strongly associated sets of objets and properties can
provide interesting patterns. Closed sets associated via the Galois connection are
indeed strongly associated but we miss interesting associations when the data
is intrinsically noisy, for instance because of measurement errors or some crispy
discretization procedures. The same reasoning has lead few years ago to the
computation of almost-closure [5] when looking for condensed representations of
frequent itemsets. The difficulty here has been to design a complete method for
computing the so-called α/β concepts. Our formalization in terms of union of
concepts that satisfy Cαβ and Cmax|Cαβ

is complete. We experimentally validated
the added-value of the approach on both synthetic data and a real application
in molecular biology. Further experiments are needed for a better understanding
of the difference between collections of concepts and collections of α/β concepts.

Acknowledgement. Jérémy Besson is funded by INRA. The authors thank
Sophie Rome and Christophe Rigotti for stimulating discussions and constructive
feedback during the preparation of this paper.

References

1. C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon.
Strong association rule mining for large gene expression data analysis: a
case study on human SAGE data. Genome Biology, 12, 2002. See
http://genomebiology.com/2002/3/12/research/0067.

2. A. Berry, J.-P. Bordat, and A. Sigayret. Concepts can not afford to stammer. In
Proceedings JIM’03, pages 25–35, Metz, France, September 2003.

3. J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of formal
concepts in transactional data. In Proceedings PaKDD’04, volume 3056 of LNCS,
pages 615–624, Sydney, Australia, May 2004. Springer-Verlag.

4. J. Besson, C. Robardet, J.-F. Boulicaut, and S. Rome. Constraint-based bi-set
mining for biologically relevant pattern discovery in microarray data. Intelligent
Data Analysis journal, 9, 2004. In Press.

5. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation
for binary data mining. In Proceedings PaKDD’00, volume 1805 of LNAI, pages
62–73, Kyoto, JP, Apr. 2000. Springer-Verlag.

6. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5–22, 2003.

7. A. Bykowski and C. Rigotti. DBC: a condensed representation of frequent patterns
for efficient mining. Information Systems Journal, 28(8):949–977, 2003.

8. B. Ganter. Two basic algorithms in concept analysis. Technical report, Technisch
Hochschule Darmstadt, Preprint 831, 1984.

9. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proceedings DS’04,
volume 3245 of LNCS, Padova, Italy, Oct. 2004. Springer-Verlag. To appear.

Mining Formal Concepts with a Bounded Number of Exceptions 45

10. B. Goethals and M. J. Zaki, editors. FIMI ’03, Frequent Itemset Mining Imple-
mentations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Min-
ing Implementations, 19 December 2003, Melbourne, Florida, USA, volume 90 of
CEUR Workshop Proceedings, 2003.

11. L. Nourine and O. Raynaud. A fast algortihm for building lattices. Information
Processing Letters, 71:190–204, 1999.

12. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, Jan. 1999.

13. J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for mining frequent
closed itemsets. In Proceedings ACM SIGMOD Workshop DMKD’00, 2000.

14. R. Pensa, C. Leschi, J. Besson, and J.-F. Boulicaut. Assessment of discretization
techniques for relevant pattern discovery from gene expression data. In Proceedings
BIOKDD’04 co-located with ACM SIGKDD’04, Seattle, USA, August 2004. In
Press.

15. F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson. Using transposition for
pattern discovery from microarray data. In Proceedings ACM SIGMOD Workshop
DMKD’03, pages 73–79, San Diego, USA, June 2003.

16. F. Rioult, C. Robardet, S. Blachon, B. Crémilleux, O. Gandrillon, and J.-F. Bouli-
caut. Mining concepts from large SAGE gene expression matrices. In Proceedings
KDID’03 co-located with ECML-PKDD’03 ISBN:953-6690-34-9, pages 107–118,
Cavtat-Dubrovnik, Croatia, September 22 2003.

17. S. Rome, K. Clément, R. Rabasa-Lhoret, E. Loizon, C. Poitou, G. S. Barsh, J.-
P. Riou, M. Laville, and H. Vidal. Microarray profiling of human skeletal muscle
reveals that insulin regulates 800 genes during an hyperinsulinemic clamp. Journal
of Biological Chemistry, March 2003. In Press.

18. G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing iceberg
concept lattices with titanic. Data and Knowledge Engineering, 42:189–222, 2002.

19. J. Wang, J. Han, and J. Pei. CLOSET+: searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2003.

20. R. Wille. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In I. Rival, editor, Ordered sets, pages 445–470. Reidel, 1982.

21. M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proceedings SIAM DM’02, Arlington, USA, April 2002.

Theoretical Bounds on the Size of Condensed
Representations

Nele Dexters and Toon Calders�

University of Antwerp, Belgium
{nele.dexters, toon.calders}@ua.ac.be

Abstract. Recent studies demonstrate the usefulness of condensed rep-
resentations as a semantic compression technique for the frequent item-
sets. Especially in inductive databases, condensed representations are
a useful tool as an intermediate format to support exploration of the
itemset space. In this paper we establish theoretical upper bounds on
the maximal size of an itemset in different condensed representations. A
central notion in the development of the bounds are the l-free sets, that
form the basis of many well-known representations. We will bound the
maximal cardinality of an l-free set based on the size of the database.
More concrete, we compute a lower bound for the size of the database in
terms of the size of the l-free set, and when the database size is smaller
than this lower bound, we know that the set cannot be l-free. An efficient
method for calculating the exact value of the bound, based on combi-
natorial identities of partial row sums, is presented. We also present
preliminary results on a statistical approximation of the bound and we
illustrate the results with some simulations.

1 Introduction

Mining frequent itemsets [1] is a core operation of many data mining algorithms.
During the last decade, hundreds of algorithms have been proposed to find fre-
quent itemsets when a database and a user-defined support threshold are given.
However, when this minimal support threshold is set too low or when the data
are highly correlated, the process of mining frequent itemsets can result in an
immense amount of frequent sets. Even the most efficient mining algorithms
cannot cope with this combinatorial blow-up. To overcome this problem, con-
densed representations can be used. Condensed representations were introduced
in [16] in the slightly different context of arbitrary Boolean rules. Intuitively,
a condensed representation can be seen as a compact view on the data that
allows for answering user queries more efficiently than directly from the origi-
nal data. In [16], for example, the collection of frequent sets is considered as a
condensed representation that allows to speed up frequency counts of arbitrary

� Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen).

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 46–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Theoretical Bounds on the Size of Condensed Representations 47

Boolean expressions over the items. In this paper we concentrate on condensed
representations for the collection of frequent itemsets itself, since this collec-
tion can already be far too large to store. A condensed representation in the
context of the frequent itemsets can be a sub-collection of all frequent itemsets
that still contains all information to construct the frequent sets with their cor-
responding supports. The best-known example of a condensed representation is
the closed itemsets representation [17]. Other examples are the Free Sets [4], the
Disjunction-Free Sets [5], the Generalized Disjunction-Free Sets [15], and the
Non-Derivable Sets [9].

Especially in inductive databases, condensed representations are a useful tool
as an intermediate format to support exploration of the itemset space. In fact,
the role of a condensed representation in an inductive database is comparable
to a partly materialized view in a data warehouse: materializing all frequent
itemsets off-line would speed-up the exploration enormously, but is infeasible
because of the gigantic number of them. Instead, the condensed representation
is materialized. This representation is much smaller, but, at the same time, con-
tains enough information to speed up ad-hoc querying in the inductive database.
When the user asks a query concerning the frequencies of itemsets, these fre-
quencies can be computed more efficiently from the condensed representation
than directly from the database. Depending on time and space constraints, the
type of condensed representation can be chosen. For example, the free sets rep-
resentation is less compact than the disjunction-free representation, but allows
for faster computation of frequency queries.

An important question now is: how condensed is a condensed representa-
tion; do we have guarantees about the maximal size of a representation? The
usefulness of a condensed representation relies critically on its size. In this pa-
per we establish theoretical upper bounds on the maximal size of an item-
set for all representations that are based on l-free sets [8]. These representa-
tions include the Free Sets [4], the Disjunction-Free Sets [5], the Generalized
Disjunction-Free Sets [15], the Non-Derivable Sets [9], and all the variants of
these representations, such as the disjunction-free and generalized disjunction-
free generators representations [12, 14]. Hence, based on the size of the database,
we present worst-case bounds on the size of the largest sets in these
representations.

A central notion in the development of the bounds are thus the l-free sets.
Each of the aforementioned representations can be expressed in terms of l-
freeness. It was shown in [8], that these representations can be expressed as
the collection of frequent l-free sets together with a part of the border, for dif-
ferent values of l. The border of the collection of the frequent l-free sets are
the itemsets that are not frequent l-free themselves, but all their subsets are
frequent l-free. For example, the free sets representation of [4], corresponds to
the collection of the frequent 1-free sets plus the sets in the border that are
infrequent. For more details about the connection between the l-free sets and
existing condensed representations, we refer to [8].

48 N. Dexters and T. Calders

In this paper, we will bound the maximal cardinality of an l-free set based on
the size of the database. More concrete, we compute a lower bound on the size
of the database in terms of the size of the l-free set, and when the database size
is smaller than this lower bound, we know that the set cannot be l-free. In this
paper, we thus give general results relating l-freeness of a set I with a bound on
the size of the database D in terms of the size of I. The results for a particular l
can be generalized to the case where l equals the size of I, yielding a connection
between ∞-freeness and a bound on the size of D in terms of the size of I,
and can also be extended to NDIs. Because the aforementioned representations
can be expressed as the collection of frequent l-free sets plus some sets in the
border, the maximal size of a set in the representations is the maximal size of
a frequent l-free set plus 1, since the sets in the border can be at most 1 item
larger than the largest frequent l-free set. In this way, we extend results of [9]
and of [13] that relate the database size to the maximal length of respectively
the non-derivable itemsets and the generalized disjunction-free sets. Hence, even
though we concentrate on a bound on the l-free sets, the main goal of the paper
is to establish a bound on the condensed representations that are based on the
l-free sets.

An efficient method, the sum-of-binomials triangle, for calculating the exact
value of the bound based on combinatorial identities of partial row sums is
presented. From this triangle, we can conclude interesting facts concerning the
size of the database.

One disadvantage of the theoretical bound is that it represents a worst-case
analysis. Hence, in reality, the actual size of the largest l-free itemset will be
much smaller than the exact bound. Therefore, besides the exact theoretical
bound, also preliminary results on a statistical bound are provided. Based on
the size of the database and the cardinality of an itemset I, the probability
that I is l-free is estimated. The bound is based on some rather harsh as-
sumptions: we assume (a) that every item has the same probability of being
present in a transaction, (b) that all items are statistically independent, and
(c) that the transactions are independent. Especially assumption (b) deviates
from reality. As we will argue in Section 6, a result of (b) will be that the
estimated probability of a set being l-free will be too high. However, as simu-
lations and comparisons with real-life datasets show, the statistical bound al-
lows for making more realistic estimations of the size of the largest l-free set
than the theoretical bound, and it has the ability to explain many empirical
observations.

The organization of the paper is as follows. In Section 2, a short review
of the different used condensed representations is given. Section 3 revisits the
notions of deduction rules. In Section 4 the bounds on the size of the database
that are related to the l-freeness of a set are introduced. Section 5 discusses
an efficient method to compute the exact bound. Section 6 gives a statistical
approximation of the subject. In Section 7, our work is related to other papers.
Section 8 concludes the paper and gives further research directions.

Theoretical Bounds on the Size of Condensed Representations 49

2 Condensed Representations

In the context of frequent itemsets a condensed representation is a sub-collection
of all frequent sets and their corresponding supports, that still contains all in-
formation to reconstruct all the frequent sets and their supports. In this section
we briefly refresh the condensed representations mentioned in the introduction.
We conclude with an example covering the representations that are important
for the rest of the paper.

Closed Sets [17]. The first successful condensed representation was the closed
set representation introduced by Pasquier et al. [17]. In short, a closed set is
an itemset such that its frequency does not equal the frequency of any of its
supersets. The collection of the frequent closed sets together with their supports
is a condensed representation. This representation will be denoted ClosedRep.

Generalized Disjunction-Free Sets [14, 15]. Let X,Y be two disjoint itemsets.
The disjunctive rule X → ∨

Y is said to hold in the database D, if every trans-
action in D that contains X, also contains at least one item of Y . A set I is
called generalized disjunction-free if there do not exist disjoint subsets X,Y of
I such that X → ∨

Y holds. The set of all generalized disjunction-free sets is
denoted GDFree.

In [15], a representation based on the frequent generalized disjunction-free
sets is introduced. It is argued that the set of frequent generalized disjunction-
free sets FGDFree is not a representation. This problem is resolved in [15] by
adding a part of the border of the set FGDFree to the representation.

Definition 1. Let S be a set of itemsets. B(S) = {J | J �∈ S,∀J ′ ⊂ J : J ′ ∈ S}.
For example, the generalized disjunction-free generators representation
(GDFreeGenRep) [15] does only stores the so-called free sets in B(S). Notice
that hence that the maximal size of a set in the generalized disjunction-free gen-
erators representation can be the maximal size of a generalized disjunction-free
set plus 1.

Free and Disjunction-Free Sets [4, 5, 12]. Free and disjunction-free sets are spe-
cial cases of generalized disjunction-free sets. For free sets, the righthand side
of the rules X → ∨

Y is restricted to singletons, for disjunction-free sets to
singletons and pairs. Hence, a set I is free if and only if there does not exist
a rule X → a that holds with X ∪ {a} ⊆ I, and I is disjunction-free if there
does not exists a rule X → a ∨ b that holds with X ∪ {a, b} ⊆ I. The free and
disjunction-free sets are denoted respectively by Free and DFree, the frequent
free and frequent disjunction-free sets by FFree and FDFree.

Again, neither FFree, nor FDFree form a condensed representation. Hence, for
the representations based on the free sets and the disjunction-free sets, (parts of)
the border must be stored as well. See [4, 5, 12, 14, 15] for some representations
consisting of FFree or FDFree together with a part of the border.

50 N. Dexters and T. Calders

D =

tid Items tid Items
1 a, b, c, d, e 9 b, c, d
2 a, b, d, e 10 b, c, e
3 a, b, d, e 11 c, d, e
4 b, c, d, e 12 b, c
5 b, c, d, e 13 b, d
6 a, b, e 14 c, d
7 a, c, d 15 d, e
8 a, c, e 16 b

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

1

1

1

11

22

3

33

3

4 4 4 45

4 43 5 6 7 7 7 6 7

6 1011 1011

16

Free

Disj.-Free

Gen. Disj.-Free

abe Closed

abc Not closed

Infrequent

3-Frequent

NDI

DI

Fig. 1. Free, Disjunction-Free, Generalized Disjunction-Free, Closed, and Non-
Derivable sets

Non-derivable Itemsets (NDI) [6]. The non-derivable itemsets representation is
based on deduction rules to derive bounds [lI ,uI] on the support of an itemset
I, based on the support of its strict subsets. These deduction rules are revisited
in Section 3. We call an itemset I derivable if lI = uI . Because always lI ≤
supp(I) ≤ uI , in that case, we can derive the support of I from the supports of
each strict subset J of I. Hence, in the NDI representation, only the frequent
non-derivable itemsets are stored. This representation is denoted NDIRep.

Example 1. Consider the database D that is given in Figure 1. In the lattice
in Figure 1, different sets of itemsets are indicated for easy reference. The free
sets, disjunction-free sets, and generalized disjunction-free sets are indicated with
grey boxes. The free sets are a superset of the disjunction-free sets, which are
on their turn a superset of the generalized disjunction-free sets. The general-
ized disjunction-free sets are indicated in the darkest shade of grey. Then, the

Theoretical Bounds on the Size of Condensed Representations 51

disjunction-free sets that are not generalized disjunction-free in the middle shade,
and finally the free sets that are not disjunction-free in the lightest shade. The
sets below the horizontal line are non-derivable, the ones above the line are deriv-
able. The closed itemsets are in bold. The curve separates the frequent (below)
from the infrequent (top) sets. The minimal support in this example is 3.

We now have the following representations:

ClosedRep = {∅, a, b, c, d, e, ac, ad, ae, bc, bd, be, cd, ce, de, abe, bcd, bce,

bde, cde, abde, bcde}supp ,

FreeRep = (FFreesupp, {abc, acd, ace, acde}) ,

DFreeRep = (FDFree ∪ {abc, abe, ace, ade})supp ,

DFreeGenRep = (FDFreesupp, {ade}supp, {abc, abe, ace}) ,

GDFreeRep = (FGDFree ∪ {abc, abd, abe, ace, ade, bcd, bce, bde, cde})supp ,

GDFreeGenRep = (FGDFreesupp, {abd, ade, bcd, bce, bde, cde}supp, {abc, ace}) ,

NDIRep = {∅, a, b, c, d, e, ac, ad, ae, bc, bd, be, cd, ce, de, abd, abe, ade,

bcd, bce, bde, cde}supp ,

The notation supp in the superscript of a set S of itemsets denotes that the
itemsets in S are stored together with their supports.

3 Deduction Rules Revisited

In this section we refresh the deduction rules introduced in [6]. The deduction
rules allow for deriving a lower and an upper bound on the support of an itemset,
based on the support of its subsets. For example, for the itemset abc we can find
the following lower bound on the support:

supp(abc) ≥ supp(ab) + supp(ac)− supp(a).

We first give a complete collection of deduction rules in general. Then, the depth
of a rule is defined and only rules up to a certain depth are considered. Next, the
notion of an l-free set is introduced. The l-free sets are an important concept,
since in [8], it was shown that many condensed representations can easily be
expressed in a uniform way using the l-free sets. We will not go into detail about
this uniform framework, but only give the intuition behind it. For the exact
details, we refer the reader to [8].

3.1 General Concept of Deduction Rules

We start from a database D with |D| = m transactions, based on |I| = n items.
We consider an itemset I ⊆ I with k elements (|I| = k) and we are interested in
the support of I in the database D: supp(I,D). In [8] (in a somewhat different
form), the following relation between the support of I and its subsets was shown:

52 N. Dexters and T. Calders

Table 1. Deduction rules for the set abc. sJ denotes supp(J)

Upper/Lower Bounds δX (I, D) X |I \ X | X ∪ Y

supp(I, D) ≤ sab + sac + sbc − sa − sb − sc + s{} {} 3 abc

supp(I, D) ≥ sab + sac − sa a 2 abc
supp(I, D) ≥ sab + sbc − sb b 2 abc

supp(I, D) ≥ sac + sbc − sc c 2 abc

supp(I, D) ≤ sab ab 1 abc

supp(I, D) ≤ sac ac 1 abc
supp(I, D) ≤ sbc bc 1 abc

supp(I, D) ≥ 0 abc 0 abc

Depth l

X ∪ Y Equalities
abc supp(I, D) = sab + sac + sbc − sa − sb − sc + s{} − s

abc

abc supp(I, D) = sab + sac − sa + s
abc

abc supp(I, D) = sab + sbc − sb + sabc

abc supp(I, D) = sac + sbc − sc + s
abc

abc supp(I, D) = sab − sabc

abc supp(I, D) = sac − s
abc

abc supp(I, D) = sbc − sabc

abc supp(I, D) = sabc

Theorem 1. Let δX(I,D) denote the following sum (X ⊆ I):

δX(I,D) =
∑

X⊆J⊂I

(−1)|I\J|+1supp(J).

Then, supp(I,D) = δX(I,D) + (−1)|Y |supp(X ∪ Y ,D) where Y = I \X, and
supp(X ∪ Y ,D) denotes the number of transactions in D that contains all items
in X, and none of the items in Y .

Hence, for all X ⊆ I, depending on the sign of |Y |, δX(I,D) is an upper
(|Y | odd), or a lower (|Y | even) bound on the support of I. The set X ∪ Y in
Theorem 1, is called a generalized itemset based on I. For the complete set of
rules for the example where I = {a, b, c}, see Table 1. With these rules we can
compute a lower and upper bound on the support of I when we assume that
the supports of all its strict subsets are known. The lower bound is denoted by
LB(I,D) and the upper bound by UB(I,D). That is:

LB(I,D) = max{δX(I,D) | X ⊆ I, |I \X| even}
UB(I,D) = min{δX(I,D) | X ⊆ I, |I \X| odd}

Notice that the complexity of the sum δX(I,D) depends on the cardinality of
Y = I \X. This number |Y | is called the depth of the rule δX(I,D). Hence, the
deeper a rule is, the more complex it is (see Table 1). Therefore, it is often inter-
esting to only consider rules up to a fixed depth l. The lower and upper bounds

Theoretical Bounds on the Size of Condensed Representations 53

calculated with rules up to depth l will be denoted LBl(I,D) and UBl(I,D).
That is:

LBl(I,D) = max{δX(I,D) | X ⊆ I, |I \X| even, |I \X| ≤ l}
UBl(I,D) = min{δX(I,D) | X ⊆ I, |I \X| odd, |I \X| ≤ l}

When it is clear from the context we do not explicitly write down D in the
formulas.

Example 2. Consider the following database:

TID Items
1 a, b, c, d
2 a, b, c
3 a, b, d, e
4 c, e
5 b, d, e
6 a, b, e
7 a, c, e
8 a, d, e
9 b, c, e
10 b, d, e

In this database, the following supports hold:

supp({}) = 10 supp(a) = 6 supp(b) = 7 supp(c) = 5
supp(ab) = 4 supp(ac) = 3 supp(bc) = 3

The deduction rules for abc up to level 2 are the following
(see Table 1):
supp(abc) ≥ δa(abc) = 1 supp(abc) ≤ δab(abc) = 4
supp(abc) ≥ δb(abc) = 0 supp(abc) ≤ δac(abc) = 3
supp(abc) ≥ δc(abc) = 1 supp(abc) ≤ δbc(abc) = 3

supp(abc) ≥ δabc(abc) = 0

Hence, based on the supports of the subsets of abc, we can deduce that LB1(abc)=
0, UB1(abc) = 3, LB2(abc) = 1 and UB2(abc) = 3.

3.2 l-Freeness of an Itemset

A very important notion in the context of a unifying framework for the condensed
representations is l-freeness:

Definition 2. Let l be a positive integer. A set I is l-free, if supp(I,D) �=
LBl(I,D), and supp(I,D) �= UBl(I,D). A set I is ∞-free, if supp(I,D) �=
LB(I,D), and supp(I,D) �= UB(I,D).

In [8], the following properties of l-freeness were shown: l-freeness is anti-
monotone; that is, every subset of an l-free itemset is also l-free, and every
superset of an itemset that is not l-free is also not l-free. l-freeness is interesting
in the context of condensed representations, because the support of any non-l-
free set can be derived as follows: if supp(I,D) = LBl(I,D), then for all I ⊆ J ,
supp(J,D) = LBl(J,D). Hence, if we observe the fact supp(I,D) = LBl(I,D),
there is no need to store any of the supersets of I in a condensed representation.
The representations that rely on l-freeness hence store the frequent l-free sets,
and some sets that are “on the border.” For a detailed description we refer to
Section 2 and [8].

From Theorem 1, the following lemma easily follows:

Lemma 1. Let l be a positive integer, I an itemset, X ⊆ I. I is l-free if and
only if supp(X ∪ Y) �= 0 for all generalized itemsets X ∪ Y that are based on I,
with |Y | ≤ l.

54 N. Dexters and T. Calders

Example 3. Consider the following database D:

TID Items
1 a, d
2 b, d, e
3 c, d, e
4 a, b, e
5 a, c, d
6 b, c, d, e
7 a, b, c, d

In this database, the following supports hold:

supp({}) = 7 supp(a) = 4 supp(b) = 4 supp(c) = 4
supp(ab) = 2 supp(ac) = 2 supp(bc) = 2

The deduction rules for abc up to level 2 are the following
(see Table 1):
supp(abc) ≥ δ∅(abc) = 1 supp(abc) ≤ δab(abc) = 2
supp(abc) ≥ δa(abc) = 0 supp(abc) ≤ δac(abc) = 2
supp(abc) ≥ δb(abc) = 0 supp(abc) ≤ δbc(abc) = 2
supp(abc) ≥ δc(abc) = 0 supp(abc) ≥ δabc(abc) = 0

We can deduce that LB2(abc) = 0, UB2(abc) = 2. Hence, supp(abc,D) must be
in the interval [0, 2]. Since the actual support of abc in D is 1, supp(abc,D) �=
LB2(abc) and supp(abc,D) �= UB2(abc). Thus, abc is a 2-free set. Notice that
indeed, as stated by Lemma 1, the generalized itemsets based on abc with at most
2 negations have a non-zero support. These generalized itemsets (see Table 1)
are the sets abc, abc, abc, abc, abc, abc, and abc. Each of them occurs exactly
once in the database. To illustrate the other direction of Lemma 1, notice that
supp(abc,D) = 0. abc has three negations and thus corresponds to a deduction
rule of depth 3. This deduction rule (δ∅(abc)) gives an upper bound of 1 for abc,
and thus we see that supp(abc,D) = UB3(abc), illustrating that abc is not 3-free.

3.3 Link Between l-Freeness and Condensed Representations

The following proposition from [8], links the free sets [4], the disjunction-free
sets [5, 12], and the generalized disjunction-free sets [15, 14] with l-freeness, for
different values of l.

Proposition 1. Link between l-freeness with other condensed representations.

– I is free ⇔ I is 1− free
– I is disjunction− free ⇔ I is 2− free
– I is generalized disjunction− free ⇔ I is ∞− free
– I is NDI ⇒ every strict subset of I is ∞− free

From the unified framework introduced in [8] the following proposition mak-
ing the connection between the size of an l-free set and the different condensed
representations is immediate (recall from Section 2 that the different representa-
tions can be expressed as l-free sets plus the border . Hence, the representations
can contain sets that are 1 item larger than the largest l-free set):

Proposition 2. Let max(l,D) be the length of the largest frequent l-free set in D.

– Every set in the free sets representation [4] has length at most max(1,D)+1.
– Every set in the disjunction-free sets representation [5, 12] has length at most

max(2,D) + 1.

Theoretical Bounds on the Size of Condensed Representations 55

– Every set in the generalized disjunction-free sets representation [15, 14] has
length at most max(∞,D) + 1.

– Every set in the non-derivable itemsets representation [9] has length at most
max(∞,D) + 1.

Hence, because of Proposition 2, a theoretical bound on the size of the l-free
sets immediately leads to a bound on many condensed representations.

4 Bounds on the Size of the Database

In this section we present the theoretical lower bound dl(k) on the size of the
database in terms of the size k of the largest l-free set. Hence, if D contains an
l-free set of size k, then the cardinality of D must be at least dl(k). This result
then allows for deriving the maximal cardinality of an l-free set based on the size
of a database. Indeed; the maximal size k of an l-free set is the largest integer k
such that |D| ≥ dl(k).

4.1 Bounds for l-Free Sets

We illustrate the principle of the bound with an example. Let I = abcd be a 2-free
set. We will show how the lower bound d2(4) on the size of D can be derived.
Because I is 2-free, by definition, supp(I,D) �= LB2(I,D) and supp(I,D) �=
UB2(I,D). Because of Lemma 1, for all generalized itemsets X ∪ Y based on I,
with |Y | ≤ 2, supp(X ∪ Y ,D) �= 0 . In the case of abcd, this means that

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0 .

Every transaction can make only one of these conditions true. Indeed; suppose
that a transaction T supports both abcd and abcd. Then, T must at the same
time not contain b (abcd) and contain b (abcd), and that is clearly impossible.
Hence, a database D in which abcd is 2-free, must contain at least one transaction
for each generalized itemset X ∪ Y based on abcd with |Y | ≤ 2. Hence, to get
the lower bound on the size of the database, we we have to count the number
of generalized itemsets consisting of 4 items with at most two negated items.

There are
(

4
2

)
= 6 generalized itemsets consisting of 4 elements with exactly

two elements negated and
(

4
1

)
= 4 generalized itemsets of size 4 with exactly

1 item negated. There exists only 1 generalized itemset of size 4 with no items
negated. Hence, every database in which abcd is 2-free needs to have at least
d2(4) = 6 + 4 + 1 = 11 transactions.

In general, let I be l-free with |I| = k. Then, for every generalized itemset
X ∪ Y based on I with |Y | ≤ l, there needs to be at least one supporting

56 N. Dexters and T. Calders

transaction. For each generalized itemset we thus have k items and at most l of
them can be negated. We now count all the possibilities with no item of the k
items negated, with 1 item negated, . . . , up to when l items out of k are negated.
Hence, in general, we have:

dl(k) =
(

k
0

)
+

(
k
1

)
+ . . . +

(
k
l

)
=

l∑
i=0

(
k
i

)

This reasoning leads directly to the following theorem:

Theorem 2.

I is l− free ⇒ |D| ≥
l∑

i=0

(
k
i

)
(1)

|D| <
l∑

i=0

(
k
i

)
⇒ I is not l−free (2)

Example 4. We now show that the above bound eq. (2) is tight. This means that

if we take a database with |D| = ∑l
i=0

(
k
i

)
, that this gives that I is l-free. We

consider the case where l = 2, and I = abc thus k = 3. The size of the database

is D =
∑2

i=0

(
3
i

)
= 7.

Consider:

TID Items
1 a, d
2 b, d, e
3 c, d, e
4 a, b, e
5 a, c, d
6 b, c, d, e
7 a, b, c, d

In this database, the following supports hold:

supp({}) = 7 supp(a) = 4 supp(b) = 4 supp(c) = 4
supp(ab) = 2 supp(ac) = 2 supp(bc) = 2

The deduction rules for abc up to level 2 are the following
(see Table 1):
supp(abc) ≥ δa(abc) = 0 supp(abc) ≤ δab(abc) = 2
supp(abc) ≥ δb(abc) = 0 supp(abc) ≤ δac(abc) = 2
supp(abc) ≥ δc(abc) = 0 supp(abc) ≤ δbc(abc) = 2

supp(abc) ≥ δabc(abc) = 0

We can deduce that LB2(abc)=0, UB2(abc)=2. We thus have that supp(abc,D)∈
[0, 2]. If we compute supp(abc,D) exactly by counting in the database, we find
that supp(abc,D)=1, illustrating that supp(abc,D) �=LB2(abc) and supp(abc,D)�=
UB2(abc), thus abc is a 2-free set.

4.2 Bounds for ∞-Free Sets

If we take l equal to k, the size of I, we use all the deduction rules to derive the
support of I. Based on (1) and (2) we now have the following results:

I is ∞−free ⇒ |D| ≥
k∑

i=0

(
k
i

)
= 2k (3)

Theoretical Bounds on the Size of Condensed Representations 57

|D| < 2k ⇒ I is not ∞−free (4)

From eqs. (3) and (4), it follows that

Theorem 3. I is ∞−free ⇒ |I| ≤ log2(|D|)
Hence, |I| > log2(|D|) ⇒ I is not ∞−free

5 Exact Computation of the Bound

In Section 4.1 we derived Theorem 2. A crucial part in the equations (1) and (2)
is the incomplete binomial sum that is completely determined by l and k:

dl(k) =def

l∑
i=0

(
k
i

)

This is the exact amount of generalized itemsets that is needed to to make a
set I of size k, l-free. We can now find a recursion relation between the different
dl(k)’s. We illustrate the relation with an example. Suppose we want to know the
value of d2(4). d2(4) corresponds to the number of generalized disjunction-free
sets of size 4 with at most 2 negations. Let abcd be the base of the generalized
disjunction-free sets. The disjunction-free sets based on abcd can be divided into
two groups: the ones with d, and the ones with d. Let X ∪ Y be a generalized
itemset of the first type. Then, X \ {d} ∪ Y is a generalized itemset based on
abc with at most 2 negations. Similarly, if we take d out of a generalized itemset
based on abcd of the second type, we get a generalized itemset based on abc with
at most 1 negation. Hence, there are d2(3) generalized itemsets of the first kind,
and d1(3) of the second type. Hence, d2(4) = d2(3) + d1(3). An illustration of
this example can be found in Table 2.

For general l and k, we get the following recursive relation:

dl(k) = dl(k − 1) + dl−1(k − 1) (5)

When we rewrite this relation with the partial binomial sums, we get:

l∑
i=0

(
k
i

)
=

l∑
i=0

(
k − 1

i

)
+

l−1∑
i=0

(
k − 1

i

)

This relation is also known as Pascal’s 6th Identity of Partial Row Sum Rules.
Because l ≤ k, we only need to know the diagonal elements dk(k) and the

base-elements d1(k) to use the above recurrence relation (5). With this knowl-
edge, we can construct a triangle with the incomplete binomial sums dl(k).

This sum-of-binomials triangle has several interesting properties (see Fig. 2):

– The diagonal defined by l = k is easy to compute because
∑k

i=0

(
k
i

)
= 2k.

– The bottom line for l = 0 is always 1.

58 N. Dexters and T. Calders

Table 2. Total amount of generalized itemsets for a set of size k = 4, consisting of the
items a, b, c and d, for level 2 based on a subset of size k = 3

d2(3)∑2
i=0

(
3
i

)
= 7

abc

abc

(
3
2

)
= 3

abc

abc

abc

(
3
1

)
= 3

abc

abc

(
3
0

)
= 1

→

d2(4) d2(3) d1(3)∑2
i=0

(
4
i

)
= 11

∑2
i=0

(
3
i

)
= 7

∑1
i=0

(
3
i

)
= 4

abcd abcd

abcd abcd

abcd abcd

abcd

(
4
2

)
= 6 abcd

abcd abcd

abcd abcd

abcd abcd
abcd abcd

abcd

(
4
1

)
= 4 abcd

abcd abcd

abcd

(
4
0

)
= 1 abcd

– The base line for l = 1 is always k + 1. For a set of size k to be 1-free,(
k
0

)
+

(
k
1

)
= 1 + k generalized itemsets are needed.

– The line under the diagonal defined by l = k − 1 is always 2k − 1. dk(k) =∑k
i=0

(
k
i

)
= 2k and dk−1(k) =

∑k−1
i=0

(
k
i

)
= 2k −

(
k
k

)
= 2k − 1.

– Parallellogramrule: the entry dl′(k′) for a certain couple (k′, l′) can be calcu-
lated using (5) and therefore needs all the other entries in the parallelogram
that can be constructed starting in that couple (k′, l′) and drawing lines par-
allel with the diagonal and the horizontal axes. The parallellogram is then
bounded by the diagonal defined by l = k, the horizonthal base line defined
by l = 1 and the lines parallel with these basic axes defined by l = l′ and
l = k − (k′ − l′). For an example, take k′ = 6 and l′ = 4.

– Sumrule: the entry dl′(k′) for a certain couple (k′, l′) can also be computed
by taking

(∑k′−1
i=0 dl′−1(i)

)
+ 1. This is taking the sum of all the entries on

the lower line, one step shifted to the left, plus 1. For example, if we take
k′ = 6 and l′ = 4 we see that 57 = (1 + 2 + 4 + 8 + 15 + 26) + 1.

To give an idea of the complete(d) diagram, see Figure 2. When l = 2 we

find d2(k) =
k2

2
+ o(k). When l = 3 we find d3(k) =

k3

2 · 3 + o(k2). In general,

dl(k) =
kl

l!
+ o(kl−1).

Theoretical Bounds on the Size of Condensed Representations 59

l 1 2 4 8 16 32 64 128 256 . . 2k . .
. ↗ 2k − 1. .
. ↗ ↗ . . .
8 1 2 4 8 16 32 64 128 256 ↗
7 1 2 4 8 16 32 64 128 255
6 1 2 4 8 16 32 64 127 297
5 1 2 4 8 16 32 63 120 219
4 1 2 4 8 16 31 57 99 163
3 1 2 4 8 15 26 42 64 93 . . . −→ n3

3!

2 1 2 4 7 11 16 22 29 37 . . . −→ n2

2!

1 1 2 3 4 5 6 7 8 9 → → k+1 −→ n
0 1 1 1 1 1 1 1 1 1 → → 1 −→ 1

0 1 2 3 4 5 6 7 8 . . k . Limit.

Fig. 2. Sum-of-binomials triangle

With the use of Proposition 2 and these bounds, we also find bounds for the
various condensed representations.

6 Statistical Approximation

The theoretical bound derived in the previous sections represents a worst-case
analysis. Based on the size of the database, the theoretical bound is valid for all
databases of that size. Therefore, in reality, the theoretical bound is in general
far too pessimistic. In this section we present preliminary results on a statistical
bound. Based on the size of the database and the cardinality of an itemset I,
the probability of I being l-free is given. This probability gives a more realistic
estimate of the largest l-free set. The study is preliminary in the sense that there
are a lot of assumptions. First, these assumptions are discussed. Then we develop
a general theory in case of these assumptions. Finally, the results are illustrated
with a couple of simulations.

6.1 Assumptions

We consider a transaction database D over items from I. Let m be the number
of transactions, and n the number of items. In the development of a statistical
bound, we will assume the following conditions:

(a) The transactions are statistically independent. That is, the presence or ab-
sence of certain transactions does not influence other transactions. Thus, the
process generating the transactions has no memory. In the market-basket
model this condition corresponds to the situation in which the shoppers do
not influence each other. There are many practical situations in which this
assumption fails. For example, in a transaction database containing informa-
tion about alarm events, it is conceivable that the existence of a transaction

60 N. Dexters and T. Calders

with a certain type of alarm increases the probability of other alarms in other
transactions. Even though, the independence condition is often (implicitly)
assumed in other papers as well. See for example many papers about privacy
preserving data mining, such as [2] where it is assumed that the transactions
are the realization of m independent identical distributed (iid) random vari-
ables and [10] where there is an implicit assumption.

(b) We assume that each item has the same probability, p, of being in a trans-
action. Hence, in fact, we assume that the supports of the items are more
or less the same. This is often not the case in the real-life datasets. How-
ever, due to the minimal support constraint, after the first database scan,
the items with the lowest supports are removed. It is also common practice
to remove items with support that is too high. For example, the well-known
pumsb* dataset from the UCI KDD Repository [11] is formed by removing
all items with relative support higher than 80% from the pumsb dataset. In
this way, the supports of the items are within a limited range. Even though,
this restriction is a small deviation from reality and needs to be taken into
account when evaluating the results.

(c) The most severe assumption is that all items are statistically independent.
Hence, the probability of having items i1 . . . ik in a transaction T is pk. Thus,
we assume that the database is formed by a process that randomly picks
items from I with probability p. In reality (hopefully) the database does
contain correlated items. However, correlated items decrease the probability
of having large l-free sets. Indeed, suppose i1 and i2 are correlated and
p = 0.5. Then the existence of i1i2 and i1i2 is favored over the existence of
i1i2. Therefore, the statistical bound will provide bounds that are good for
random data, but that are too large for highly correlated data. Even though,
the bounds found by the statistical approximation will be much better than
the theoretical, worst-case bound.

For an itemset I consisting of k items, we now define a stochast Xk
l being true

when all generalized itemsets X ∪ Y based on I with |I| = k and |Y | ≤ l have
support different from 0. In the case that l = k we write Xk. If the probability of
this stochast Xk

l (Xk) almost equals 1, we know that the probability is very high
that all generalized itemsets up to level l (k) have a support value that differs
from 0. This means that we are almost certain that an itemset I of size k is an
l-free (∞-free) set (see Lemma 1, Section 3). We try to find a general expression
in terms of the probability of items, p, for the probability of this stochast Xk

l

(Xk) and therefore for l-freeness (∞-freeness). With the probabilities Xk
l we can

also estimate the amount of l-free (∞-free) sets as follows:

E[l−free sets] =
n∑

i=1

(
n
i

)
P (Xk

l = 1)

E[∞−free sets] =
n∑

i=1

(
n
i

)
P (Xk = 1)

Theoretical Bounds on the Size of Condensed Representations 61

6.2 General Expression

We now derive a general expression for the probability of Xk
l being true.

We focus on a set I consisting of k items and a depth l ≤ k. We now consider
a generalized itemset X ∪ Y with |Y | = l1 (l1 ≤ l) and |X ∪ Y | = k. The
probability that X ∪ Y occurs in a transaction T is:

P (X ∪ Y in T) = pk−l1(1− p)l1 ,

and the probability that the generalized itemset does not occur in that transac-
tion is

P (X ∪ Y not in T) = 1− pk−l1(1− p)l1 .

The probability that X∪Y does not occur in the database is the probability that
the generalized itemset does not occur in any of the transactions in the database.
Because of the assumption of independence of the transactions we find

P (X ∪ Y not in D) =
[
1− pk−l1(1− p)l1

]m
.

Based on this expression, the probability that the generalized itemset occurs in
the database, so occurs in one or more transactions of D, can be computed as

P (X ∪ Y in D) = 1− [
1− pk−l1(1− p)l1

]m
.

Example 5. In Table 1 (Section 3), all deduction rules and corresponding gener-
alized itemsets for abc can be found. For l ≤ 3, the stochast X3

l is defined as “all
generalized itemsets X ∪Y based on abc with |Y | ≤ l have support �= 0” and the
stochast X3 means “all generalized itemsets X ∪ Y based on abc have support
�= 0”. We can compute P (X3) (l = k = 3) as P (X3) = P (all gen. itemsets
X ∪ Y based on abc have supp �= 0) = P (abc occurs in D, abc occurs in D, abc
occurs in D, abc occurs in D, abc occurs in D, abc occurs in D, abc occurs in
D, abc occurs in D). Analogously, we can compute P (X3

1) (l = 1) as P (all gen.
itemsets X ∪ Y based on abc with |Y | ≤ 1 have supp �= 0) = P (abc occurs in D,
abc occurs in D, abc occurs in D, abc occurs in D).

The probability that a set I of size k is l-free is now the probability that
for all generalized itemsets X ∪ Y with |Y | ≤ l, X ∪ Y occurs in at least one
transaction. Hence,

P (Xk
l) = P{X ∪ Y in D | X ∪ Y = I, |Y | ≤ l}.

A major problem for finding a closed expression for this probability P (Xk
l) is

that the conditions in {X ∪ Y in D | X ∪ Y = I, |Y | ≤ l} are not independent.
Indeed, suppose that m = 7. Then P (X3

3) denotes the probability that a set of
size 3 is a 3-free set. From the theoretical bound in Theorem 2, we know that
a database of size 7 cannot have a 3-free set of size 3. Therefore, P (X3

3) = 0, if
m = 7. However, in the case that the size of the database is much larger than
the number of generalized itemsets that need to have support larger than 1, we

62 N. Dexters and T. Calders

can assume that the conditions are independent. For m going to infinity, in the
limit, independence does hold. It is important though to keep in mind that using
the independence does increase the estimation of the probability we make. We
will use the following approximation of P (Xk

l):

P (Xk
l) ≈

l∏
l1=0

[
1− (

1− pk−l1(1− p)l1
)m

]
(

k
l1

)
.

6.3 Illustration

We illustrate the approximation and the resulting formulas in the case p = 0.5.
In the case p = 0.5, we can further simplify the formulas.

P (Xk
l) ≈

l∏
l1=0

[
1− (

1− (0.5)k−l1(1− (0.5))l1
)m

]
(

k
l1

)

=
l∏

l1=0

[
1− (

1− (0.5)k
)m

]
(

k
l1

)

=
[
1− (

1− (0.5)k
)m

]∑l

l1=0

(
k
l1

)

=
[
1− (

1− (0.5)k
)m

]dl(k)
.

Hence, for ∞-freeness this yields the following bound:

P (Xk) =
[
1− (

1− (0.5)k
)m

]2k

.

6.4 Simulations

To empirically evaluate the proposed statistical bound, we performed some tests
on the Mushroom dataset. This dataset contains characteristics from different
species of mushrooms and can be found in the UCI Machine Learning Reposi-
tory [3]. We use the Mushroom dataset because this dataset is small enough to
find all 1-free and 2-free sets without having to impose support constraints. In
this way, we can focus on l-freeness in isolation of the frequency constraint.

Bound on Length. In Table 3, the results of some simulations are given. The
largest l-free set, the theoretical bound, and the statistical bound are given. The
reported statistical bound is the largest value of k such that

(
n
k

)
× P (Xk

l) ≥ 1 .

Theoretical Bounds on the Size of Condensed Representations 63

Table 3. Largest ∞-free set, theoretical bound and statistical bound for some bench-
mark datasets

Largest Theoretical Statistical
l-free Bound Bound

l = 1 l = 2 l = ∞ l = 1 l = 2 l = ∞ l = 1 l = 2 l = ∞
mushroom 10 9 9 8123 126 12 16 12 10

That is, the largest k such that the expected number of l-free sets of length k
is at least 1. We initialized p to 0.5, as we assume no prior knowledge on the
supports of the items.

As can be seen in Table 3, in this situation, the statistical bound is better
than the theoretical bound. Especially when l is small, the theoretical bound is
far from realistic.

7 Related Work

In [7], the log2(|D|) + 1-bound on the NDI-representation was already proven.
In [13], it is showed, using a very similar technique, the upper bound log2(|D|)+1
on the cardinality of generalized disjunction-free set. Notice that this claim is
less strong than our claim that the largest ∞-free set is at most log2(|D|), and
that ∞-free and generalized disjunction-free is the same. This discrepancy comes
partially from a slight difference in definition between generalized disjunction-
free sets in [15], and in [8]. The results in [13] are based on the definitions in [15],
while the results in this paper are based on the definitions in [8]. We next explain
the difference and motivate our choice to follow the definition of [8].

The original definition of generalized disjunction-free sets in [15] relies on
the notion of disjunctive rules I \ Y → ∨

Y . A rule I \ Y → ∨
Y holds in a

transaction database if and only if every transaction that contains all items in
I \ Y also contains at least one item in Y . A set I is said to be generalized
disjunction-free if for all non-empty Y ⊂ I, the rule I \ Y → ∨

Y does not hold.
Notice that the rule I \ Y → ∨

Y holds if and only if supp((I \ Y) ∪ Y) = 0 [8].
Since Y = ∅ is not considered, a set is generalized disjunction-free according to
[15] if and only if supp((I \ Y)∪ Y) �= 0 for all non-empty subsets Y of I. In [8],
however, also the rule I → ∅ is considered. The rule I → ∅ only holds for sets with
support equal to 0, since the right-hand side is the empty disjunction, which is
always false. Therefore, the only sets for which there is a difference, are sets with
support equal to 0. There are situations in which a set with support equal to 0
is generalized disjunction-free in the definition of [15], while it is not generalized
disjunction-free in the definition of [8]. In our opinion, it is reasonable to say that
an itemset with support 0 is not generalized disjunction-free, since the support
of all its supersets can trivially be derived to be equal to 0. Therefore, in this
paper, we used the definitions from [8]. This difference explains the difference
between the bound of [13] and ours, as for a set I of size k to be generalized

64 N. Dexters and T. Calders

disjunction-free, there must not be 2k transactions, but 2k−1; supp(I) itself can
be 0. Therefore, I can only be generalized disjunction-free according to [15] if
|D| ≥ 2k− 1. This gives the bound log2(|D|+1), which still improves the bound
log2(|D|) + 1 given in [13].

Notice incidently that our bound on the l-free sets can easily be extended
to a bound on frequent l-free sets, using a similar technique as in [13]. Let σ
be the frequency threshold. A set I is frequent if at least σ transactions in the
database contain all items of I. Therefore, for a set I of cardinality k to be
frequent l-free, there need to be at least σ transactions containing all items of I,
and 1 transaction for every other generalized itemset X ∪ Y based on I. Hence,

I is σ − frequent l− free ⇒ |D| ≥∑l
i=0

(
k
i

)
+ (σ − 1)

Another interesting link exists with [18]. In [18], the following question in
the context of mining frequent itemsets with a standard levelwise approach is
studied: given the current level and the current frequent itemsets, what is the
maximal number of candidate itemsets that can be generated on the next level?
The method described in [18] can be used at run-time to get ever better estimates
on the size of the largest possible frequent itemset. Furthermore, the method
also works for any collection of itemsets that is subset-closed. Hence, the results
in [18] can also be used to get a run-time bound on the number and maximal
cardinality of the l-free sets.

8 Conclusion and Future Work

In this paper an upper bound on the size of the database D, in terms of the
size of the set I is found, indicating that whenever that bound is not exceeded,
the set I is no l-free set. For the case that l = k the bound simplifies yielding a
simple expression in terms of |I| and |D| from which we can conclude that I is
derivable or not.

The aim of this work was trying to find a simple expression only based on the
size of the set I and the amounts of tuples in the database, to tell us if that set
I is derivable or not. We have tried to find a reasonable approximation for the
combinatorial bound that is easy to compute and useful for making conclusions.
Because of the link between l-freeness and the other representations (freeness,
disjunction-freeness and generalized disjunction-freeness) we can extend our re-
sults based on Proposition 1 and also make conclusions for these cases.

|D| < k + 1 ⇒ I is not free

|D| < k2 + k + 2
2

⇒ I is not disjunction− free

|D| < 2k ⇒ I is not generalized disjunction− free

An interesting topic for future research is to find better statistical bounds
that include dependence between items.

Theoretical Bounds on the Size of Condensed Representations 65

References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM SIGMOD Int. Conf. Management of
Data, pages 207–216, Washington, D.C., 1993.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. ACM SIG-
MOD Int. Conf. Management of Data, pages 439–450, 2000.

3. C.L. Blake and C.J. Merz. The UCI Repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science, 1998.

4. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PKDD Int. Conf. Principles of Data Mining and
Knowledge Discovery, pages 75–85, 2000.

5. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proc. PODS Int. Conf. Principles of Database Systems, 2001.

6. T. Calders. Deducing bounds on the frequency of itemsets. In EDBT Workshop
DTDM Database Techniques in Data Mining, 2002.

7. T. Calders. Axiomatization and Deduction Rules for the Frequency
of Itemsets. PhD thesis, University of Antwerp, Belgium, 2003.
http://win-www.ruca.ua.ac.be/u/calders/download/thesis.pdf.

8. T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In
Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge Discovery, pages
71–82, 2002.

9. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc.
PKDD Int. Conf. Principles of Data Mining and Knowledge Discovery, pages 74–
85. Springer, 2002.

10. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining
of association rules. In Proc. KDD Int. Conf. Knowledge Discovery in Databases,
2002.

11. S. Hettich and S. D. Bay. The UCI KDD Archive. [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer Science,
1999.

12. M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-
free generators. In Proc. IEEE Int. Conf. on Data Mining, pages 305–312, 2001.

13. M. Kryszkiewicz. Upper bound on the length of generalized disjunction free pat-
terns. In SSDBM, 2004.

14. M. Kryszkiewicz and M. Gajek. Concise representation of frequent patterns based
on generalized disjunction-free generators. In Proc. PaKDD Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, pages 159–171, 2002.

15. M. Kryszkiewicz and M. Gajek. Why to apply generalized disjunction-free gen-
erators representation of frequent patterns? In Proc. International Syposium on
Methodologies for Intelligent Systems, pages 382–392, 2002.

16. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-
sentations. In Proc. KDD Int. Conf. Knowledge Discovery in Databases, 1996.

17. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. ICDT Int. Conf. Database Theory, pages
398–416, 1999.

18. J. Van den Bussche F. Geerts, B. Goethals. A tight upper bound on the number
of candidate patterns. In Proc. ICDM, pages 155–162, 2001.

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 66–88, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mining Interesting XML-Enabled Association Rules with
Templates

Ling Feng1 and Tharam Dillon2

1 Dept. of Computer Science, University of Twente, PO Box 217,
7500 AE Enschede, The Netherlands

ling@cs.utwente.nl
2 Faculty of Information Technology, University of Technology, Sydney, Australia

tharam3@it.uts.edu.au

Abstract. XML-enabled association rule framework [FDWC03] extends the
notion of associated items to XML fragments to present associations among
trees rather than simple-structured items of atomic values. They are more
flexible and powerful in representing both simple and complex structured
association relationships inherent in XML data. Compared with traditional
association mining in the well-structured world, mining from XML data,
however, is confronted with more challenges due to the inherent flexibilities of
XML in both structure and semantics. The primary challenges include 1) a more
complicated hierarchical data structure; 2) an ordered data context; and 3) a
much bigger data size. In order to make XML-enabled association rule mining
truly practical and computationally tractable, in this study, we present a
template model to help users specify the interesting XML-enabled associations
to be mined. Techniques for template-guided mining of association rules from
large XML data are also described in the paper. We demonstrate the
effectiveness of these techniques through a set of experiments on both synthetic
and real-life data.

1 Introduction

EXtensible Markup Language (XML) has emerged as the dominant standard for
describing data and exchanging data on the Web. Its nested, self-describing structure
provides a simple yet flexible means for applications to exchange data. Currently,
XML is penetrating virtually all areas of Internet application programming, and
bringing about a huge amount of data encoded in XML [SWK+01]. With the continuous
growth in XML data sources, the ability to extract knowledge from them for decision
support becomes increasingly important and desirable. Data mining, emerging during
the late 1980s, has made great strides during the 1990s in transforming vast amounts of
data into useful knowledge, and is expected to continue to flourish into the new
millennium [HK01]. However, compared to the fruitful achievements in mining well-
structured data such as relational databases and object-oriented databases, mining in
the semi-structured XML world has received less exploration so far. The aim of this
paper is to integrate the newly emerging XML technology into data mining
technology, using association rule mining as a case in point.

 Mining Interesting XML-Enabled Association Rules with Templates 67

1.1 Challenges for Traditional Association Rule Mining

The problem of mining association rules was first introduced in [AIS93]. The most
often cited application of association rules is market basket analysis using transaction
databases from supermarkets. These databases contain sales transaction records, each
of which details items bought by a customer in the transaction. Mining association
rules is the process of discovering knowledge such as 80% of customers who bought
diapers also bought beer. which can be expressed as diapers beer (20%, 80%),
where 80% is the confidence level of the rule, and 20% is the support level of the rule
indicating how frequently the customers bought both diapers and beer. In general, an
association rule takes the form X Y (s, c); where X and Y are sets of items, and s
and c are support and confidence respectively.

In the XML Era, mining association rules is confronted with more challenges than
in the traditional well-structured world due to the inherent flexibilities of XML in
both structure and semantics. First, XML data has a more complex hierarchical
structure than a database record. Second, elements in XML data have contextual
positions, which thus carry the order notion. Third, XML data appears to be much
bigger than traditional data. To address these challenges, the classic association rule
mining framework originating with transactional databases needs to be re-examined.

1.2 Our Work

Under the traditional association rule framework, the basic unit of data to look at is
database record, and the construct unit of a discovered association rule is item which
has an atomic value. These lead us to the following two questions: 1) what is the
counterpart of record and 2) what is the counterpart of item in mining association
relationships from XML data?

In this study, we focus on rule detection from a collection of XML documents,
which describe the same type of information (e.g., customer order, etc.). Hence, each
of XML documents corresponds to a database record, and possesses a tree-like
structure [Con01, Con00]. Accordingly, we extend the notion of associated item to an
XML fragment (i.e., tree), and build up associations among trees rather than simple-
structured items of atomic values. For consistency, we call each such kind of trees a
tree-structured item to distinguish it from the traditional counterpart item. With the
above extended notions, we propose an XML-enabled association rule framework
in the paper. From both structural and semantic aspects, XML-enabled association
rules are more powerful and flexible than the traditional ones.

While achieving considerable strengths in association description, XML-enabled
association rule mining has meanwhile to resolve another serious problem. That is,
XML data to be mined are usually much bigger than traditional transactional data. In
order to make XML-enabled association mining truly practical and computationally
tractable, we propose a template model to help such rule discovery. Previous work on
traditional association rules demonstrated the effectiveness of constraint/query-based
association mining [LNHP99, NLHP98, SVA97, TUA+98, MPC96, BP97, DT99]. It is
applicable to XML-enabled association mining as well, since users may also have
certain interesting XML portions in mind, from which to do the mining. For example,
a shop owner may want to know “which kind of people after purchasing some books

68 L. Feng and T. Dillon

tends to order a CD of the same title?” With the presented template model, users can
declare what kinds of associations are of interest so that the mining process can be
more focused.

We believe that the synergy of the two areas has great potential in delivering more
desirable and self-describing knowledge in manifold application areas over the
Internet.

The remainder of the paper is organized as follows. We review some closely
related work in Section 2. A formal definition of XML-enabled association rules and
related measurements is given in Section 3. Section 4 introduces a template model for
XML-enabled association rules. A performance study is presented Section 5. We
conclude the paper and outline future work in Section 6.

2 Related Work

Since the problem of mining association rules was first introduced in [AIS93], a large
amount of work has been done in various directions, including efficient, Apriori-like
mining methods [AS94, KMR+94, SON95, PCY95a, PCY95b, PCY96, Toi96, ZPOL97,
FSGM+98], mining generalized, multi-level, or quantitative association rules [SA95,
SA96, HF95a, FMMT96b, FMMT96a, MY97, LSW97, KHC97, RS98], association rule
mining query languages [MPC96, TUA+98], constraint-based rule mining [LNHP99,
NLHP98, SVA97, TUA+98, BP97, HF95b, DT99], incremental maintenance of discovered
association rules [CHNW96], parallel and distributed mining [AS96a, HKK97, CNFF96],
mining correlations and causal structures [BMS97, SBMU98, SBMU00], cyclic,
interesting and surprising association rule mining [ORS98, RMS98, CDF+00, CSD98],
mining frequent itemsets with multiple supports [LHM99, WHH00], and so on.

In the following subsections, we review the work that is directly relevant to our
study, particularly the languages for mining association rules from relational
databases, constraint-based association rules, and mining associations from semi-
structured data.

2.1 Mining Association Rules from Relational Databases

There were some proposals in the literature to tightly couple association rule mining
with relational database systems [AS96b, HS95, TS98, and STA98]. [HS95] investigated
the possibility to carry out association rule mining from relational tables using SQL
query language. Following a set-oriented methodology, a simple mining algorithm,
whose basic steps are sorting and merge scan join, was implemented in a relational
database system. [TS98] developed SQL formulations based on SQL-92 and SQL-OR
(SQL enhanced with object relational extensions) for mining generalized association
rules. This work highlights that it is possible to express mining computations that are
significantly more complicated than simple boolean associations in SQL using
essentially the same framework [TS98].

Several languages extensions have also been proposed to extend SQL with mining
operators. [MPC96] presented an SQL-like operator, named MINE RULE, for mining
association rules. It unified the descriptions of all association-related mining
problems. The procedural semantics of this operator were provided by means of an
extended relational algebra. In the same year, [HFK+96] presented a data mining query

 Mining Interesting XML-Enabled Association Rules with Templates 69

language called DMQL, for relational databases. DMQL adopts an SQL-like syntax to
facilitate high-level data mining and natural integration with relational query language
SQL. [TUA+98] generalized the problem of association rule mining to query flocks,
i.e., parameterized queries with a filter condition to eliminate values of the parameters
that are uninteresting. By expressing the query flock in Datalog, the set of options for
adapting a-priori, an optimization technique for association rule mining, can then be
easily presented.

2.2 Constraint-Based Association Rule Mining

A frequently encountered phenomenon in data mining is that although a mining
system may discover quite a large number of rules, many of them could be poorly
focused or lack interest to users. To solve this kind of problem, [FPSSU95] proposed
to specify a desired logical form of rules, called metaquery, to be discovered. In their
study, a metaquery served as an important interface between human discoverers and
the discovery system. A meta-rule-guided approach was further proposed in [HF95b],
which applied meta-rules to discover multiple-level association rules. A meta-rule is
in the form of P1 ∧ …. ∧ Pm → Q1 ∧ …. ∧ Qm, in which some of the predicates
(and/or their variables) in the antecedent and/or consequent of the rule could be
instantiated. Such kinds of meta-rules can be used to describe what forms of rules are
expected and thus constrain the mining process.

In addition, some other kinds of constraints have been considered and integrated
into association rule mining. [SVA97] utilized boolean expressions to constrain the
presence or absence of associated items. [NLHP98, LNHP99] introduced a set of 1-
variable and 2-variable constraint constructs, including domain, class and SQL-style
aggregate constraints, to enable users to specify what kinds of mined rules are to be
computed. Several pruning optimization techniques were also developed for mining
constraint-based association rules [SVA97, NLHP98, LNHP99].

2.3 Discovery of Association Rules from Semi-structured Data

As the amount of semi-structured data available on the Web increases rapidly,
extracting knowledge from semi-structured data appears to be an interesting topic.
Unlike traditional well-structured data whose schema is known in advance, semi-
structured data does not have a fixed schema, and the structure of data may be
incomplete or irregular. One interesting work in the literature [WL97, WL98, WL00]
was thus to discover similar structures among a collection of semi-structured objects,
which describe the same type of information. A detailed algorithm for find structural
associations inherent in semi-structured objects was given in [WL97, WHH00].

Finding structure-oriented association relationships, [SSC97] was proposed to mine
association rules that relate structural data values to concepts extracted from
unstructured and/or semi-structured data. An extended concept hierarchy (ECH) was
applied to maintain parent, child, and sibling relationships between concepts, so that
the generated rules can relate a given concept in the ECH and a given structured
attribute value to the neighbours of the given concept in the ECH. The architecture
and algorithm for mining such kinds of association rules were described in [SCH+98,
SCHS99]. Based on the work of [WL97, SCH+98], [MU00] also proposed to first detect

70 L. Feng and T. Dillon

typical common structure of semi-structured data to filter out useless data portions,
and then use the idea of concept hierarchy to generate extra rules in addition to the
originally generated rules.

3 An XML-Enabled Association Rule Framework: Formulation

In this section, we define the XML-enabled association rule framework, starting with
the tree structure of its associated items. The relationship among tree-structured items,
as well as the containing relationship between a tree-structured item and an XML
instance document, is then defined. They form the base for the definitions of XML-
enabled association rules and related measurements.

3.1 Trees (Tree-Structured Items)

The basic construct in XML-enabled association rule framework is the structured
item, which can be described using a rooted, ordered tree. In the paper, we also refer
to tree-structured item as tree, which is made up of a series of nodes that are
connected to each other through directed labeled edges. In addition, constraints can be
defined over the nodes and edges. At an abstract level, a tree consists of the following
five components:

• a set of nodes, Node, representing XML elements or attributes;
• a set of directed edges, Edge, representing ancestor-descendant or element-

attribute relationships between the nodes;
• a set of labels, Label, denoting different types of relationships between the nodes;
• a set of constraints, Constraint, defined over the nodes and edges;

• a unique root node nroot ∈ Node of the tree.

Fig. 1. Two Tree examples

 Mining Interesting XML-Enabled Association Rules with Templates 71

3.1.1 Nodes
We categorize nodes into basic nodes and complex nodes. Basic nodes have no edges
emanating from them. They are the leaf nodes in the tree diagram. Complex nodes are
the internal nodes in the diagram. Each complex node has one or more labeled
directed edges emanating from it, each associated with a label, and each going to
another node. Figure 1 gives two tree examples. The example tree T1 contains one
complex node n1,1, and three basic nodes n1,2, n1,3 and n1,4. The example tree T2 has
three complex node n2,1, n2,2, n2,3, and three basic nodes n2,4, n2,5 and n2,6.

Each basic node has a simple content, taking values from the domains of basic data
types like string, integer and float. A wildcard value is allowed to denote any
content including an empty one.

On the contrary, the content of a complex node called complex content refers to some
other nodes through directed labeled edges. Each edge connects two nodes, with a label
stating the relationship between the two nodes. Before giving the formal definition of
complex content, let’s first define the concepts of connection, connection cluster and
connection cluster set using the cableset approach presented in [Mor86, Sha91].

Definition 1. A connection of a node oden N∈ is a pair (l, n′), where l is a label in

Label and is a node in Node, representing that node n is connected to node n′ via
relation l.

Definition 2. A connection clusters of a node oden N∈ is a pair (l, ns), where l is a
label in Label and ns are a sequence of nodes in Node, representing that node n is
connected to each node in ns via relation l.

Definition 3. A connection cluster set of a node oden N∈ is a set of connection

clusters, 1 1{(,), ..., (,)}, (1 ,) ()k k i jl ns l ns where i j i j k i j l l∀ ∀ ≤ ≤ ≠ ⇔ ≠ .

Definition 4. A complex content of a complex node is a connection cluster set.

Definition 5. A node oden N∈ is a tuple (nname, ncontent), consisting of a node name
nname and a node ncontent.

Example 1. In Figure 1 (a), the basic nodes n1,2, n1,3 and n1,4 have simple contents of
string data type, which are “young”, “male” and “teacher”. The complex node n1,1

links to a sequence of nodes n1,2, n1,3 via relationship “ad” (denoting ancestor-
descendant), and to basic node n1,4 via relationship “ea” (denoting element-
attribute). It thus has complex content {(ad, n1,2, n1,3),(ea, n1,4)}.

3.1.2 Labeled Edges
Each edge in a tree links two nodes, with a label specifying their relationship. We
consider two kinds of links, namely, ancestor-descendant and element-attribute
relationships, abbreviated as “ad” and “ea”, respectively. Thus, Label = {ad, ea}.

• An antecedent-descendant represents a structural relationship between an
XML element and its nested subelement. It takes parent-child relationship as
its special case.

• An element-attribute represents a relationship between an XML element and
its attribute.

72 L. Feng and T. Dillon

Definition 6. An edge dgee E∈ is a triple (l, nsource, ntarget), consisting of a label l ∈ Label

stating the link type, the source node of the edge nsource ∈ Node and the target node of
the edge ntarget ∈ Node. An edge e can also be pictorially denoted

as" "l
source targetn n⎯⎯→ .

Example 2. In Figure 1 (a), the edge
1,1 1,4" "ean n⎯⎯→ links PERSON element to its

Profession attribute, and the edge
1,1 1,2" "adn n⎯⎯→ links Person element to its child

element Age.

3.1.3 Constraints
The following three kinds of constraints can be imposed upon nodes and edges to
enhance the expressiveness of tree structured items.

1) Level Constraint Over An ad-Labeled Edge Level (e)

For an ancestor-descendant relationship ett
ad

source nne arg⎯→⎯= , the level constraint

Level (e) = m (where m is an integer) indicates that ettn arg is the m-th descendant

generation of sourcen . When m = 1, it implies that ettn arg is a child of sourcen . A

wildcard level constraint value, denoted using *, (i.e., Level (e) =) means any nested
level among the ancestor and descendant nodes. In Figure1 (a), the constraints

1)(2,11,1 =⎯→⎯ nnLevel ad and 1)(3,11,1 =⎯→⎯ nnLevel ad require that both Age and

Gender are direct children of PERSON element. We simplify the constraint
expression by attaching the level value directly with the edge in the figure.

Unless explicitly specified, the default level constraint value over any ad
relationship is *.

2) Adhesion Constraint Over An ea-Labeled Edge Adhesion(e)

Assume we have an edge ett
ea

source nne arg⎯→⎯= pointing from an element node

sourcen to its attribute node ettn arg . The adhesion constraint Adhesion(e)=strong

declares that ettn arg is a compulsory attribute node of element node sourcen . An

optional attribute node ettn arg of sourcen can be specified using Adhesion(e)= weak.

In Figure 1 (a), the weak adhesion constraint

weaknnAdhesion ea =⎯→⎯)(4,11,1 implies that Profession is an optional attribute of

PERSON element.
The default adhesion constraint over an element-attribute relationship is strong.

3) Position Constraint Over A Node Posi(n)
The position constraint over a node n states its contextual position among all the
nodes sharing the same ancestor and meanwhile having the same node name as n. A
position constraint has the form of vvfirstvlastnPosi |()|())(+−= (where v is a non-

negative integer). Taking 2T tree in Figure 1 (b) for example, ())(4,2 lastnPosi =

 Mining Interesting XML-Enabled Association Rules with Templates 73

implies the Title of the last ordered CD. A constraint like 1())(4,2 −= lastnPosi means

the title of the last to second ordered CD.
By default, a node n is assumed to have the first occurrence position, i.e.,

())(firstnPosi = . Its next sibling node '
'n with the same node name as n is thus

constrained by 1())(+= firstnPosi in turn.

Definition 7. A well-formed tree T is a tree that satisfies the following three

conditions:

1) T has only one unique tree node.

2) For any edge in T , it links two correctly-typed nodes. That is, if the link type
is ea (element- attribute), the source is a complex node and the target is a
basic node; and if the link type is ad (ancestor-descendant), the source is a
complex node.

3) For any constraint in T , it is applied to a correctly-typed edged. That is, a
level constraint only constrains an ad-labeled edge, and an adhesion
constraint only constrains ea-labeled edge.

In the paper, all the trees under discussion are assumed to be well-formed.

3.2 The Sub-tree (Sub-item) Relationship

We define the sub-tree (sub-item) relationship between two trees (tree-structured
items) on the basis of partial relationship of tree nodes, which is defined as follows.

Definition 8. Let n = (nname, ncontent) and n′ = (n′name, n′content) be two nodes where
(nname = n′name). n is a part of n′, denoted as (n ≤ node n′), if and only if n and n′ have
the same position constraint (Posi(n) = Posi(n′)), and meanwhile satisfy one of the
following requirements:

[Case 1] n is a basic node with a wildcard content * (i.e., ncontent = *).
[Case 2] n and n’ are basic nodes with the same simple content (i.e., ncontent = n′content).
[Case 3] n and n’ are complex nodes, each with a connection cluster set as the
content.

For contentnknnl ∈∀).....1,(there exits () contentk nnnl ''
1
' ',...., ∈ and a

subsequence
kmnmn ',.....1

' of '
1

'' ,..... knn ,such that

))()(()(()1('''
i

i m
l

i
l

mnodei nncnncnnkii ⎯→⎯=⎯→⎯∧≤≤≤∀ . Here, c denotes the level

constraint if l=ad; and adhesion constraint if l=ea.

Definition 9. Given two trees (tree-structured items) whose root nodes are r and r’,

respectively. T is called a sub-tree (sub-item) of 'T , denoted as (T tree
'T), if and

only if there exists a node 'n in 'T , such that (r node n’).

74 L. Feng and T. Dillon

Example 3. Let’s look at the trees in 1 and 2. T3 is a sub-tree of T1 (T3 tree T1) since
root node n3 1 in T3 is a part of node n1,1 in T1. Also, (T4 tree T2) and (T5 tree T2), since
(n4,1 node n2,3) and (n5,1 node n2,1).

Fig. 2. Sub-tree examples

According to Definition 8 and 9, we can derive the following properties:

Property 1. The sub-tree (sub-item) relationship has the following properties:

1) reflective: (T tree T)
2) transitive: (T tree T’) ∧ (T’ tree T’’) ∧ (T tree T’’)

Definition 10. Two trees T and T’ are equal, denoted as (T =tree T’), if and only if (T

tree T’) ∧ (T’ tree T’).

3.3 The Containing Relationship Between an XML Document and a Tree
(Tree-Structured Item)

Since an XML document possesses a hierarchical document structure, where an XML
element may contain further embedded elements, and can be attached with a number
of attributes, it is therefore frequently modeled using a labeled ordered tree in the
literature [Con01, Con00]. Here, we first define when the content of an
element/attribute in an XML document contains a tree, including a single node tree.
Based on this, the containing relationship between an XML instance document and a
tree (tree-structured item) can then be deduced.

 Mining Interesting XML-Enabled Association Rules with Templates 75

Definition 11. The embedding between an XML element/attribute and a tree (tree-
structured item) T, rooted at node r = (rname, rcontent), can be recursively defined as
follows:

[Case 1] r is a basic node * (i.e., tree T has only one node) with a simple content.
If a simple XML element/attribute 1) has a tag/attribute name rname , 2) has a simple
element/attribute value equal to rcontent , and 3) satisfies the position constraint
Posi(r), i.e., the Posi(r)-th occurrence in the host XML document, then this
element/attribute embeds T .
[Case 2] r is a basic node (i.e., tree T contains only one node) with a wildcard content *.
If a simple XML element/attribute 1) has a tag/attribute name rname , and 2) satisfies
the position constraint Posi(r), then this element/attribute embeds T.
[Case 3] r is a complex node with a connection cluster set as its content.
If an XML element 1) has a tag name rname , 2) for any connection cluster (l, n1,...,nk)

 rcontent where l = ea, the element has a set of attributes which embed the trees
rooted at n1 ,...,nk respectively; and 3) for any connection cluster (l, n1 ,...,nk)
rcontent where l = ad, the element has a sequence of ordered subelements which embed
the trees rooted at n1 ,...,nk respectively, then this element embeds T . Note that the
appearance of these attributes or subelements in the XML document must conform to

the constraints)(i
ea nrAdhesion ⎯→⎯ and)1()(kinrLevel i

ad ≤≤⎯→⎯ defined in T .

Definition 12. An XML document doc contains a tree (tree-structured item) T rooted

at node r, denoted as (docT tree∈), if and only if it has an XML element or attribute

which embeds treeT .

Example 4. An XML instance document shown in Figure 3 contains all the example
trees in Figure 1 and 2. Note that the order of CD and BOOK elements, as well as the
order of Title subelements of BOOK conform to the orders declared in 52 ,TT and 4T .

The position constraint over node ())(4,24,2 lastnposin = in 2T is also satisfied by the

given XML document.

Property 2. If an XML document contains a tree (tree-structured item) T , then it
contains any of its sub-tree (sub-item).
The tenability of the property can be easily proven according to Definition 12 and 11.

3.4 A Formal Definition of XML-Enabled Association Rules

With the above notation, we are now in a position to formally define XML-enabled
association rules and related measurements.

Definition 13. Let T denote a set of trees (tree-structured items). An XML-enabled
association rule is an implication of the form X Y, which satisfies the following
two conditions:

1) X ⊂ T, Y ⊂ T, and X ∩ Y =φ ;

2) for ∀ T, T’∈ (X ∪ Y), there exists no tree T’’ such that (T’’ treeT) ∧
(T’’ tree T’).

76 L. Feng and T. Dillon

Fig. 3. An XML document example

Different from classical association rules where associated items are usually
denoted using simple structured data from the domains of basic data types, the
items in XML-enabled association rules can have a hierarchical tree structure, as
indicated by the first clause of the definition. Here, it is worth pointing out that
when each of the tree-structured items contains only one basic root node, the XML-
enabled association rules will degrade to the traditional association rules. The
second clause of the definition requires that in an XML-enabled association rule, no
common sub-trees exist within any two item trees in order to avoid redundant
expression.

Figure 4 illustrates some XML-enabled association rule examples. Thanks to
XML, XML-enabled association rules are more powerful than traditional association
rules in capturing and describing association relationships. Such enhanced capabilities
can be reflected from both a structural as well as a semantic point of view.

• Association items have hierarchical tree structures, which are more natural,
informative and understandable (e.g., Rule 1 & 2 in Figure 4).

• Associated items inherently carry the order notion, enabling a uniform
description of association and sequence patterns within one mining framework
(e.g., Rule 1 states the sequence of books to be ordered, i.e., “Star War I”
proceeding “Star War II ” on a customer’s order).

• Associated items can further be constrained by their context positions,
hierarchical levels, and weak/strong adhesion in the corresponding XML data to
be mined. (e.g., Rule 1 indicates the contextual appearances of BOOKs on the
order).

• Association relationships among structures and structured-values can also be
captured and described (e.g., Rule 2 states that a student orders some flowers
from a shop, and leaves detailed content of FLOWER element such as the kind
of flowers and quantity, etc. aside).

 Mining Interesting XML-Enabled Association Rules with Templates 77

• Auxiliary information which states the occurrence context of association
relationships can be uniformly self-described in the mining framework (e.g.,
Rule 1 indicates that only male people have such as order pattern).

Similar to traditional association rules, we use support and confidence as two
major measurements for XML-enabled association rules.

Fig. 4. XML-enabled association rule examples

Definition 14. Let D be a set of XML documents. The support and confidence of an

XML-enabled association rule X Y are defined:
||

||
)(

D
support xyD

YX = ,

||

||
)(

x

xy

D

D
YX =confidence where)})((|{ docTYXTdocD treexy ∈∪∈∀= , and

)}(|{ docTXTdocD treex ∈∈∀= .

4 Template-Guided Mining of XML-Enabled Association Rules

In this section, we describe the techniques used to mine template-guided XML-
enabled association rules. Our mining process proceeds in three steps.

Phase-1: Transforming Tree-Structured Data into Sequences
Different from traditional association mining where both transactions to be mined and
associated items are of simple structure, XML-enabled association mining must deal
with complex tree-structured data and their inherent association relationships. To
prepare for efficient mining, our first step is to transform each tree in the XML
database and each tree variable in the template expression into a sequence while
preserving their hierarchical structures. We employ the encoding technique, recently

78 L. Feng and T. Dillon

developed by Wang et al. for efficient indexing and querying XML data [WPF03], to
do such transformation. That is, a tree T is transformed into a sequence Transform(T)
= (a1 , p1), (a2 , p2), . . . , (an pn) , where ai represents a node in the tree T , pi is the
path from the root node to node ai, and a1 , a2 , . . . , an is the preorder traversal of the
tree [WPF03]. For example, Doc1 (Figure 5) can be encoded into a sequence like:

Fig. 5. An XML document example Doc1

Transform(Doc1) = (ORDER, ∈), (PERSON, ORDER), (@Profession,
ORDER/PERSON), (“student”, ORDER/PERSON/@Profession), (@Address,
ORDER/PERSON), (“NL”, ORDER/ PERSON/@Address), (Name,
ORDER/PERSON), (“Martin Louis”, ORDER/ PER- SON/Name), (Gender,
ORDER/PERSON), (“male”, ORDER/PERSON/Gender), (ITEM, ORDER), (VCD,
ORDER/ITEM), (Title, ORDER/ITEM/VCD), (“Pop Music”,
ORDER/ITEM/VCD/Title), (Title, ORDER/ITEM/VCD), (“StarWar I”,
ORDER/ITEM/VCD/Title), (Title, ORDER/ITEM/VCD), (“StarWar II”, ORDER/
ITEM/VCD/Title), (BOOK, ORDER/ITEM), (Title, ORDER/ITEM/BOOK), (“StarWar
I”, ORDER/ITEM/BOOK/Title), (Title, ORDER/ITEM/BOOK),(“StarWar II”,
ORDER/ITEM/BOOK/Title)

Similarly, we can convert the three tree variables in Template 1 (Figure 6) to the
following three sequences: Transform(T1) = (ORDER, ∈), (VCD, ORDER),
(Title, ORDER/VCD), (?, ORDER/VCD/Title) ; Transform(T2)= (ORDER, ∈),
(BOOK, ORDER), (Title, ORDER/BOOK), (?, ORDER/BOOK/Title) ;
Transform(T3) = (PERSON, ∈), (@Profession, PERSON), (?, PERSON/
@Profession) .

Phase-2: Discovering Structurally Containing Relationships by Sub-sequence
Matching
With the structure-encoded sequences, checking the embedding relationship (i.e.,
whether an XML document contains a template tree variable) degrades to non-
contiguous subsequence matching. Let Doc and T be an XML document and a

 Mining Interesting XML-Enabled Association Rules with Templates 79

Fig. 6. Template examples

template tree variable, respectively. Assume that
)(TTransform ∇ =),),.....(,(),,(2211 nn papapa and)(TTransform ∇ =

),(),.....,,(),,(''
2

'
2

'
1
'

1
'

mm papapa . Doc structurally contains T if and only if

maa '
1
' ,....., is a non-contiguous subsequence of naa ,.....,1 and ip ' is a non-

contiguous subsequence of jp where (ji aa ='). Here, symbol ? in a template tree

variable is treated as a wildcard which can match any node label in a document. In the
example,)(1TTransform ∇ is an non-contiguous subsequence of)(1DocTransform ,

thus, 1Doc structurally contains 1T∇ . Also, the same for 2T∇ and 3T∇ . Given a

mining template, the output of this phase is a subset of XML documents in the
database that structurally contain all its tree variables.

Phase-3: Correlating Concrete Contents with Structures
For each document obtained after Phase-2, our last step is to instantiate every symbol
? in the template expression with a concrete content extracted from the document,
which also observes content constraint(s) as indicated by the template. For instance,
conforming to Template 1 (Figure 6) which requires Content(n1) = Content(n2),
two possible content instantiation combinations can be done based on Doc1 , i.e.,

Instantiation Combination 1: Content(n1) = “Star War I ”,
Content(n2) = “Star War I ”, Content(n3) = “student ”.

Instantiation Combination 2: Content(n1) = “Star War II ”,
Content(n2) = “Star War II ”, Content(n3) = “student ”.

80 L. Feng and T. Dillon

Fig. 7. Two more XML document examples: Doc2 and Doc3

Assume we have a database containing three XML documents Doc1 (Figure 5),
Doc2 , and Doc3 (Figure 7). To count the support of each such kind of con- tent
instantiations, and thus the association rules, we employ the hash technique to hash all
the content instantiation combinations extracted from all the XML documents
obtained after Step 2 into a hash table, as illustrated in Figure 8 Suppose HashF
unc(“Star War I”, “Star War I”, “student”) = 1, HashFunc(“Sta rWar I”, “StarWar
I”, “artist”) = 1, and HashFunc(“Star War II”, “Star War II”, “student”) = 4.

Fig. 8. Hash table for all possible content instantiation combinations extracted from Doc1, Doc2

and Doc3

Note that the entry list underlying each bucket of the hash table is always
maintained in a sorted order while we hash each content instantiation combination into
the hash table. In this way, the same content instantiation combinations can adjacently
stay together, making the support counting easy and efficient. For example, according
to the hashing result in Figure 8, Count(“Star War I”, “Star War I”, “artist”) = 1,
Count(“Star War I”, “Star War I”, “student”) = 2, and Count(“Star War I”, “Star
War II”, “student”) = 1. Figure 9 outlines the support and confidence of the obtained
association rules which conform to Template 1.

 Mining Interesting XML-Enabled Association Rules with Templates 81

Fig. 9. Discovered XML-enabled association rules that conforms to Template 1

5 Performance Study

To assess the performance of the mining method, we have conducted a set of
experiments on both synthetic and real-life data. The method used to generate
synthetic XML data and templates is described in Subsection 5.1, and Subsection 5.2
presents some experimental results from this. Results obtained from real-life XML
data are reported in Subsection 5.3.

5.1 Generation of Synthetic XML Data and Templates

Synthetic Data Generation. We first build a complete k-ary master tree, from which
a number of subtrees are then generated to construct our database. The master tree has
totally total_label different node labels. We allow multiple nodes in a tree to have the
same label. Parameter fanout and depth specify the fanout and depth of the master
tree, respectively. From the master tree, we generate total_tree_in_db number of
subtrees. Each subtree has db tree node num nodes, which are randomly picked up
from the master tree. The root of the master tree is always selected to ensure node
connectivity within each subtree. This also accords with the basic assumption of our
study, aiming at rule detection from a collection of XML documents, which describe
the same type of information (e.g., customer order, etc.).

Template Generation. Each template consists of a set of tree variables, the number
of which is indicated by the parameter template_length. To generate each tree
variable, we first determine its size (i.e., the total number of tree nodes) via a poisson
distribution function, whose maximal value should not exceed db_tree_node_num
template_tree_size_percent. The nodes of the tree variable are picked up from the
master tree in the same way as those of the database subtrees. The probability to
assign symbol ? instead of a concrete label to a node, representing an unknown
element/attribute name or an unknown content, is template_unknown_percent.

Table 1 summarizes all the parameters used and their settings.

82 L. Feng and T. Dillon

Table 1. Parameters and Setting

5.2 Experiments with Synthetic XML Data

Two sets of experiments are performed on synthetically generated data. The machine
used is a Sun UltraSPARC-II with a 440 MHz CPU clock rate and 256 MB main
memory.

I. Scale-Up Behavior. We study the scalability of template-guided XML- enabled
association rule mining while we increase the database size (total_tree_in_db) from
10K to 100K and the tree size (db_tree_node_num) from 18 to 22, respectively. Three
templates of different lengths (i.e., containing different number of tree variables) are
used serving as the mining guidance. The support threshold and hash table size are set
to 1% and 100% respectively throughout the experiments. As shown in Figure 10(a),
the mining under the guidance of the longest template (template_length=4) always
performs the best among the three. The reason is obvious: a longer template can better
restrict the search space, thus reduce the mining time. For instance, when
tree_num_in_db=80K, the execution times under templates of length 2, 3, and 4 are
123.6 sec, 30.4 sec, and 18.7 sec, respectively. When a template indicates 3 or more
desirable tree variables, the mining time scales quite well with both the database size
and tree size.

II. Effect of the Size of the Hash Table. To investigate the impact of the hash table
size on content and structure association discovery, we vary the hash table size from
25% to 125%, with respect to the total number of different node labels (total_label) in
the database. Let support threshold be 1%. Total tree_in_db = 10K and
db_tree_node_num = 20. From the result presented in Figure 10(b), the mining times
exhibit a decreasing tendency when we enlarge the hash table. This is because with
more hash entries, the problem of hash collision can be alleviated a little more.
Different content instantiation combinations have a higher probability to be
distributed to different hash buckets, making the support counting process faster.

 Mining Interesting XML-Enabled Association Rules with Templates 83

Fig. 10. Experiments on synthetic data

5.3 Application to Real-Life XML Data

We test the template-guided XML-enabled association mining method on the real-life
DBLP data, which contains a huge number of bibliography entries in XML1. Suppose
we are interested in finding out who publishes frequently together with Michael J.
Franklin in conference proceedings. Figure 11 is the template we use while mining
the DBLP data. To restrict the mining space, we pre-process the original big DBLP
file of size 187 MB by running an XQuery to extract in total 284663 fragments
enclosed by <inproceedings>.......</inproceedings>. After discovering 52 XML
segments which structurally contain the two tree variables of the template, i.e.,
conference papers written by Michael J. Franklin, we hash the corresponding co-
authors’ names into a hash table, and obtain the following rules when the support
threshold is set to 0.002%.

Fig. 11. Template for experiment on DBPL data

Here are some rules, where author is

“Stanley B. Zdonik” %)2.19
52

10
%,004.0

284663

10
(==== sconfidencesupport

“Michael J. Franklin” %)5.13
52

7
%,003.0

284663

7
(==== sconfidencesupport

“Samuel Madden” %)5.11
52

6
%,003.0

284663

6
(==== sconfidencesupport

1 It is available at http://dblp.uni-trier.de/xml/

84 L. Feng and T. Dillon

6 Conclusion

From a structural as well as a semantic point of view, XML-enabled association rule
framework is more flexible and powerful than the traditional one in representing both
simple and complex structured association relationships. However, mining XML-
enabled association relationships poses more challenges for efficient processing than
mining traditional association rules. To address the trade-off between the enhanced
capabilities on the one side and mining performance on the other side, we present a
template model for XML-enabled association mining. We discuss techniques used in
mining template-guided XML-enabled association rules, and evaluate the
performance on both synthetic and real-life XML data. We are currently investigating
properties related to XML-enabled association mining.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pages 207-216, Washington D.C., USA, May 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 478-499,
Santiago, Chile, September 1994.

[AS96a] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE
Transactions on Knowledge and Data Engineering, 8(6):962-969, 1996.

[AS96b] R. Agrawal and K. Shim. Developing tightly-coupled data mining applications
on a relational database system. In Proc. of the 2nd. International Conference
on Knowledge Discovery and Data Mining, ‘96.

[BC00] A. Bonifati and S. Ceri. Comparative analysis of five XML query languages.
SIGMOD Record, 29(1):68-79, 2000.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: generalizing
association rules to cor- relations. In Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data, pages 265-276, Tucson, Arizona, USA, June 1997.

[BP97] E. Baralis and G. Psaila. Designing templates for mining association rules.
Journal of Intelligent Infor- mation Systems, 9(1):7-32, 1997.

[CDF+00] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D.
Ullman, and C. Yang. Finding interesting associations without support
pruning. In Proc. Intl. Conf. Data Engineering, pages 489-499, California,
USA, March 2000.

[CHNW96] D. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered
association rules in large databases: an incremental updating technique. In
Proc. of the Intl. Conf. on Data Engineering, pages 106-114, New Orleans,
Louisiana, USA, February 1996.

[Con00] World Wide Web Consortium. The XML Data Model.
http://www.w3.org/XML/ Datamodel.html/, January 2000.

[Con01] World Wide Web Consortium. Document Object Model (DOM).
http://www.w3.org/DOM/, April 2001.

[Con02a] World Wide Web Consortium. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/ xquery/, April 2002.

 Mining Interesting XML-Enabled Association Rules with Templates 85

[Con02b] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and
Operators. http://www.w3.org/TR/ xquery-operators/, April 2002.

[CNFF96] D.W. Cheung, V.T. Ng, A.W. Fu, and Y.J. Fu. Efficient mining of association
rules in distributed databases. IEEE Transactions on Knowledge and Data
Engineering, 8(6):911-922, 1996.

[CSD98] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using
temporal description length. In Proc. of the 24th Intl. Conf. on Very Large
Data Bases, pages 606-617, New York, USA, August 1998.

[DT99] L. Dehaspe and H. Toivonen. Discovery of frequent DATALOG patterns.
Data Mining and Knowledge Discovery, 3(1):7-36, 1999.

[FDWC03] L. Feng, T. Dillon, H. Weigand, and E. Chang. An xml-enabled association
rule framework. In Proc. of the 14th Intl. Conf. on Database and Expert
Systems Applications, pages 88–97, Prague, Czech Republic, September
2003.

[FMMT96a] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using
two-dimensional optimized association rules: Schema, algorithms, and
visualization. In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pages 13-23, Montreal, Canada, June 1996.

[FMMT96b] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining optimized
association rules for numeric attributes. In Proc. of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages
182-191, Montreal, Canada, June 1996.

[FPSSU95] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.
Advances in Knowledge Discovery and Data Mining, chapter Meta-queries
for data mining (W. Shen, K. Ong, B. Mitbander and C. Zaniolo). AAAI/MIT
Press, 1995.

[FSGM+98] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman.
Computing iceberg queries efficiently. In Proc. of the 24th Intl. Conf. on Very
Large Data Bases, pages 299-310, New York, USA, August 1998.

[HF95a] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. of the 21st Intl. Conf. on Very Large Data Bases, pages
420-431, Zurich, Switzerland, September 1995.

[HF95b] J. Han and Y. Fu. Meta-rule-guided mining of association rules in relational
databases. In Proc. of the 1st Intl. Workshop on Integration of Knowledge
Discovery with Deductive and Object-Oriented Databases, pages 39-46,
Singapore, December 1995.

[HFK+96] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: a data mining
query language for relational databases. In Proc. of the ACM SIGMOD
Workshop on Research Issues on Data Mining and Knowledge Discovery,
Montreal, Canada, June 1996.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2001.

[HKK97] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for
association rules. In Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 277-288, Tucson, Arizona, USA, June 1997.

[HS95] M. Houtsma and A. Swami. Set-oriented mining of association rules. In Proc.
of the International Conference on Data Engineering, Taipei, Taiwan, March
1995.

86 L. Feng and T. Dillon

[KHC97] M. Kamber, J. Han, and J.Y. Chiang. Metarule-guided mining of multi-
dimensional association rules using data cubes. In Proc. of the International
Conference on Knowledge Discovery and Data Mining, pages 207-210,
California, USA, August 1997.

[KMR+94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo.
Finding interesting rules from large sets of discovered association rules. In
Proc. of the 3rd Intl. Conf. on Information and Knowledge Management,
pages 401-408, Gaithersburg, Maryland, November 1994.

[LHM99] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In Proc. ACM SIGKDD Intl. Conf. Knowledge Discovery and Dara
Mining, pages 125-134, California, USA, August 1999.

[LNHP99] L.V.S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 157-168, USA, June
1999.

[LSW97] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. of the
Intl. Conf. on Data Engineering, pages 220-231, Birmingham, England, April
1997.

[Mor86] E.J.M. Morgado. Semantic networks as abstract data types. Technical Report
Ph.D. thesis, Technical Report 86-1, Department of Computer Science, SUNY
at Buffalo, NY, 1986.

[MPC96] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In Proc. of the 22th Intl. Conf. on Very Large Data Bases,
pages 122-133, Mumbai, India, September 1996.

[MU00] K. Maruyama and K. Uehara. Mining association rules from semi-structured
data. In Proc. of the ICDCS Workshop of Knowledge Discovery and Data
Mining in the World-Wide Web, Taiwan, April 2000.

[MY97] R.J. Miller and Y. Yang. Association rules over interval data. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 452-461, Tucson,
Arizona, USA, June 1997.

[NLHP98] R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained association rules. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 13-24, Seattle,
Washington, June 1998.

[ORS98] B. Ozden, A. Ramaswamy, and A. Silberschatz. Cyclic association rules. In
Proc. of the Intl. Conf. on Data Engineering, pages 412-421, Florida, USA,
February 1998.

[PCY95a] J.-S. Park, M.-S. Chen, and P.S. Yu. An effective hash based algorithm for
mining association rules. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pages 175-186, San Jose, CA, May 1995.

[PCY95b] J.-S. Park, M.-S. Chen, and P.S. Yu. Mining association rules with adjustable
accuracy. Technical Report IBM Research Report, 1995.

[PCY96] J.-S. Park, M.-S. Chen, and P.S. Yu. Data mining for path traversal patterns in
a web environment. In Proc. of the 16th Conference on Distributed Computing
Systems, pages 385-392, Hong Kong, May 1996.

[RMS98] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of
interesting patterns in association rules. In Proc. of the 24th Intl. Conf. on
Very Large Data Bases, pages 368-379, New York, USA, August 1998.

 Mining Interesting XML-Enabled Association Rules with Templates 87

[RS98] R. Rastogi and K. Shim. Mining optimized association rules with categorical
and numerical attributes. In Proc. of the Intl. Conf. on Data Engineering, pages
503-512, Florida, USA, February 1998.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of
the 21st Intl. Conf. on Very Large Data Bases, pages 409-419, Zurich,
Switzerland, September 1995.

[SA96] R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pages 1-12, Montreal, Canada, June 1996.

[SBMU98] C. Silverstein, S. Brin, R. Motwani, and J.D. Ullman. Scalable techniques for
mining causal structures. In Proc. of the 24th Intl. Conf. on Very Large Data
Bases, pages 594-605, New York, USA, August 1998.

[SBMU00] C. Silverstein, S. Brin, R. Motwani, and J.D. Ullman. Scalable techniques for
mining causal structures. Data Mining and Knowledge Discovery, 4(2/3):163-
192, 2000.

[SCH+98] L. Singh, B. Chen, R. Haight, P. Scheuermann, and K. Aoki. A robust system
architecture for mining semi-structured data. In Proc. of the 4th. International
Conference on Knowledge Discovery and Data Mining, pages 329-333, New
York, USA, August 1998.

[SCHS99] L. Singh, B. Chen, R. Haight, and P. Scheuermann. An algorithm for
constrained association rule mining in semi-structured data. In Proc. of the
3rd. Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 148-158, Beijing, China, April 1999.

[Sha91] S.C. Shapiro. Cables, paths, and subconscious reasoning in propositional
semantic networks (chapter). In Principles of Semantic Networks -
Explorations in the Representation of Knowledge, Editor J.F. Sowa, 1991.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21st Intl. Conf. on Very
Large Data Bases, pages 432-443, Zurich, Switzerland, Sept ‘95.

[SSC97] L. Singh, P. Scheuermann, and B. Chen. Generating association rules from
semi-structured documents using an extended concept hierarchy. In Proc. of
the 6th. International Conference on Information and Knowledge
Management, pages 193-200, Las Vegas, USA, Nov ‘97.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with databases: Alternatives and implications. In Proc. of the International
Conference on Management of Data, USA, ‘98.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data
Mining, pages 67-73, Newport Beach, California, August ‘97.

[SWK+01] A. Schmidt, F. Waas, M.L. Kersten, D. Florescu, M.J. Carey, I. Manolescu,
and R. Busse. Why and how to benchmark XML database. SIGMOD Record,
30(3):27-32, 2001.

[Toi96] H. Toivonen. Sampling large databases for association rules. In Proc. of the
22th Conference on Very Large Data Bases, pages 134-145, Mumbai, India,
September 1996.

[TS98] S. Thomas and S. Sarawagi. Mining generalized association rules and
sequential patterns using SQL queries. In Proc. of the 4th. International
Conference on Knowledge Discovery and Data Mining, New York, USA,
August 1998.

88 L. Feng and T. Dillon

[TUA+98] D. Tsur, J.D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov.
Query flocks: a generalization of association-rule mining. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 1-12, Seattle,
Washington, June 1998.

[WHH00] K. Wang, Y. He, and J. Han. Mining frequent itemsets using support
constraints. In Proc. 26st Intl. Conf. Very Large Data Bases, pages 43-52,
Cairo, Egypt, September 2000.

[WPF03] 20. H. Wang, S. Park, W. Fan, and P. Yu. ViST: A dynamic index method for
querying XML data by tree structures. In Proc. Of the ACM SIGMOD Intl.
Conf. on Management of Data, pages 110–121, California, USA, June 2003.

[WL97] K. Wang and H. Liu. Schema discovery for semi-structured data. In Proc. of
the 3rd. International Conference on Knowledge Discovery and Data Mining,
pages 271-274, California, USA, August 1997.

[WL98] K. Wang and H. Liu. Discovering typical structures of documents: a road map
approach. In Proc. Of the ACM SIGIR International Conference on Research
and Development in information Retrieval, pages 146-154, Melbourne,
Australia, August 1998.

[WL00] K. Wang and H. Liu. Discovering structural association of semistructured
data. IEEE Transactions on Knowledge and Data Engineering, 12(2):353-371,
2000.

[ZPOL97] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proc. of the 3rd International Conference on
Knowledge Discovery and Data Mining, pages 283-286, Newport Beach, CA,
USA., August 1997.

Database Transposition for Constrained (Closed)
Pattern Mining

Baptiste Jeudy1 and François Rioult2

1 Équipe Universitaire de Recherche en Informatique de St-Etienne,
Université de St-Etienne, France

baptiste.jeudy@univ-st-etienne.fr
2 GREYC - CNRS UMR 6072,

Université de Caen Basse-Normandie, France
francois.rioult@info.unicaen.fr

Abstract. Recently, different works proposed a new way to mine pat-
terns in databases with pathological size. For example, experiments in
genome biology usually provide databases with thousands of attributes
(genes) but only tens of objects (experiments). In this case, mining the
“transposed” database runs through a smaller search space, and the Ga-
lois connection allows to infer the closed patterns of the original database.
We focus here on constrained pattern mining for those unusual databases
and give a theoretical framework for database and constraint transpo-
sition. We discuss the properties of constraint transposition and look
into classical constraints. We then address the problem of generating the
closed patterns of the original database satisfying the constraint, starting
from those mined in the “transposed” database. Finally, we show how to
generate all the patterns satisfying the constraint from the closed ones.

1 Introduction

Frequent pattern mining is now well mastered, but these patterns, like associa-
tion rules, reveal to be too numerous for the experts and very expensive to com-
pute. They have to be filtered or constrained. However, mining and constraining
have to be done jointly (pushing the constraint) in order to avoid combinatorial
explosion [14]. Mining under complex constraint has become today a hot topic
and the subject of numerous works (e.g., [14, 7, 16, 20, 10, 8]). Moreover, new do-
mains are interested in our applications, and data schemes vary consequently. In
genome biology, biological experiments are very expensive and time consuming.
Therefore, only a small number of these experiments can be processed. However,
thanks to new devices (such as biochips), experiments can provide the measure-
ments of the activity of thousands of genes. This leads to databases with lots of
columns (the genes) and few rows (the experiments).

Numerous works present efficient algorithms which mine the patterns satis-
fying a user defined constraint in large databases. This constraint can combine
minimum and maximum frequency threshold together with other syntactical

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 89–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

90 B. Jeudy and F. Rioult

constraints. These algorithms are designed for databases with up to several mil-
lions of rows. However, their complexity is exponential in the number of columns
and thus they are not suited for databases with too many columns, like those
encountered in genome biology.

Recently, two propositions were done to solve this problem: instead of mining
the original database, these algorithms work on the “transposed” database, i.e.,
columns of the original database become rows in the “transposed” database and
rows becomes columns (this is indeed the same database but with a different rep-
resentation). Therefore the “transposed” database has significantly less columns
than the original one. The CARPENTER algorithm [18] is specifically designed
for mining the frequent closed patterns, and our proposition [23, 24] uses a clas-
sical algorithm for mining closed patterns with a monotonic (or anti-monotonic)
constraint. Both approaches use the transposition principle, however the problem
of mining under constraints is not fully studied, specially for complex constraints
(i.e., conjunction and disjunction of simple constraints).

In this paper, we study this problem from a theoretical point of view. Our
aim is to use classical algorithms (constrained pattern mining algorithms or
closed patterns mining algorithms) in the “transposed” database and to use
their output to regenerate patterns of the original database instead of directly
mining in the original database.
There are several interesting questions which we will therefore try to answer:

1. What kind of information can be gathered in the “transposed” database on
the patterns of the original database?

2. Is it possible to “transpose” the constraints? I.e., given a database and a
constraint, is it possible to find a “transposed” constraint such that mining
the “transposed” database with the “transposed” constraint gives informa-
tion about the patterns which satisfy the original constraint in the original
database?

3. How can we regenerate the closed patterns in the original database from the
patterns extracted in the “transposed” database?

4. How can we generate all the itemsets satisfying a constraint using the ex-
tracted closed patterns.

These questions will be addressed respectively in Sec. 2, 3, 4 and 5.
The organization of the paper is as follows: we start Sec. 2 by recalling some

usual definitions related to pattern mining and Galois connection. Then we show
in Sec. 3 how to transpose usual and complex constraints. Section 4 is a com-
plete discussion about mining constrained closed patterns using the “transposed”
database and in Sec. 5 we show how to use this to compute all (i.e., not only
closed) the patterns satisfying a constraint. Finally Sec. 6 is a short conclusion.

2 Definitions

To avoid confusion between rows (or columns) of the original database and rows
(columns) of the “transposed” database, we define a database as a relation be-

Database Transposition for Constrained (Closed) Pattern Mining 91

Table 1. Original and transposed representations of a database. The attributes are
A = {a1, a2, a3, a4} and the objects are O = {o1, o2, o3}. We use a string notation for
object sets or itemsets, e.g., a1a3a4 denotes the itemset {a1, a3, a4} and o2o3 denotes
the object set {o2, o3}. This dataset is used in all the examples

object attribute pattern
o1 a1a2a3

o2 a1a2a3

o3 a2a3a4

attribute object pattern
a1 o1o2

a2 o1o2o3

a3 o1o2o3

a4 o3

tween two sets : a set of attributes and a set of objects. The set of attributes
(or items) is denoted A and the set of objects is O. The attribute space 2A

is the collection of the subsets of A and the object space 2O is the collection
of the subsets of O. An attribute set (or itemset or attribute pattern) is a
subset of A. An object set (or object pattern) is a subset of O. A database
is a subset of A×O.

In this paper we consider that the database has more attributes than ob-
jects and that we are interested in mining attributes sets. The database can be
represented as an adjacency matrix where objects are rows and attributes are
columns (original representation) or where objects are columns and attributes
are rows (transposed representation).

2.1 Constraints

Given a database, a constraint C on an attribute set (resp. object set) is a
boolean function on 2A (resp. on 2O). Many constraints have been used in pre-
vious works. One of the most popular is the minimum frequency constraint which
requires an itemset to be present in more than a fixed number of objects. But
we can also be interested in the opposite, i.e., the maximum frequency con-
straint. Other constraints are related to Galois connection (see Sect. 2.2), such
as closed [2] patterns, free [6], contextual free [7] or key [2] patterns, or even
non-derivable [9] or emergent [25, 11] patterns. There are also syntactical con-
straints, when one focuses only on itemsets containing a fixed pattern (superset
constraint), contained in a fixed pattern (subset constraint), etc. Finally, when
a numerical value (such as a price) is associated to items, aggregate functions
such as sum, average, min, max, etc. can be used in constraints [16].

A constraint C is anti-monotonic if ∀A, B (A ⊆ B ∧ C(B)) =⇒ C(A).
A constraint C is monotonic if ∀A, B (A ⊆ B ∧ C(A)) =⇒ C(B). In both
definitions, A and B can be attribute sets or object sets. The frequency constraint
is anti-monotonic, like the subset constraint. The anti-monotonicity property is
important, because level-wise mining algorithms most of time use it to prune
the search space. Indeed, when a pattern does not satisfy the constraint, its
specialization neither and can be pruned [1].

Simple composition of constraints has good properties: the conjunction or
the disjunction of two anti-monotonic (resp. monotonic) constraints is anti-

92 B. Jeudy and F. Rioult

monotonic (resp. monotonic). The negation of an anti-monotonic (resp. mono-
tonic) constraints is monotonic (resp. anti-monotonic).

2.2 Galois Connection

The main idea underlying our work is to use the strong connection between
the itemset lattice 2A and the object lattice 2O called the Galois connection.
This connection was first used in pattern mining when closed itemset mining
algorithms were proposed [19], while it relates to many works in concept learn-
ing [17, 27].
Given a database db, the Galois operators f and g are defined as:

– f , called intension, is a function from 2O to 2A defined by

f(O) = {a ∈ A | ∀o ∈ O, (a, o) ∈ db} ,

– g, called extension, is a function from 2A to 2O defined by

g(A) = {o ∈ O | ∀a ∈ A, (a, o) ∈ db} .

Given an itemset A, g(A) is also called the support set of A in db. It is also
the set of objects for which all the attributes of A are true. The frequency of
A is |g(A)| and is denoted F(A).

Both functions enable us to link the attribute space to the object space.
However, since both spaces have not the same cardinality, there is no one to
one mapping between them1. This means that several itemsets can have the
same image in the object space and conversely. We thus define two equivalence
relations ra and ro on 2O and 2A:

– if A and B are two itemsets, A ra B if g(A) = g(B),
– if O and P are two sets of objects, O ro P if f(O) = f(P).

In every equivalence class, there is a particular element: the largest (for inclu-
sion) element of an equivalence class is unique and is called a closed attribute
set (for ra) or a closed object set (for ro).

The Galois operators f and g lead by composition to two closure operators,
namely h = f ◦g and h′ = g ◦f . They relate to lattice or hypergraph theory and
have good properties [26]. The closed sets are then the fixed points of the closure
operators and the closure of a set is the closed set of its equivalence class. In the
following we will indifferently refer to h and h′ with the notation cl. We denote
Cclose the constraint which is satisfied by the itemsets or the object sets which
are closed.

If two itemsets are equivalent, their images are equal in the object space.
There is therefore no mean to distinguish between them if the mining of the
closed patterns is performed in the object space. So, by using the Galois con-
nection to perform the search in the object space instead of the attribute space,

1 This is fortunate since the whole point of transposition is to explore a smaller space.

Database Transposition for Constrained (Closed) Pattern Mining 93

O/ O/

a1a2a4

a1a4

a3 a2

a3a4 a2a4

a4

a1a3 a1a2

a1

a1a2a3

a2a3

a2a3a4 a1a3a4

a1a2a3a4

(b)(a)

f

g

o2 o3

o1o2 o2o3

o1

o1o2o3

o1o3

Fig. 1. The equivalence classes for ra in the itemset lattice (a) and for ro in the
object set lattice (b) built on the database of Tab. 1. The closed sets are in bold face.
The arrows represent the f and g operators between the a1a2a3 and o1o2 equivalence
classes. The dotted arrows represent the closure operators h and h′

we will gather information about the equivalence classes of ra (identified by
their closed pattern), not about all individual itemsets. This answers the first
question of the introduction, i.e. what kind of information can be gathered in
the transposed database on the patterns of the original database. At best, we
will only be able to discover closed patterns.

Property 1. Some properties of f and g.

– f and g are decreasing w.r.t. the inclusion order: if A ⊆ B then g(B) ⊆ g(A)
(resp. f(B) ⊆ f(A))

– If A is an itemset and O an object set, then g(A) is a closed object set and
f(O) a closed itemset

– fixed point: A is closed if and only if f(g(A)) = cl(A) = A (resp. g(f(O)) =
cl(O) = O)

– f ◦ g ◦ f = f and g ◦ f ◦ g = g
– A ⊆ cl(A)

In the Galois connection framework, the association of a closed pattern of
attributes and the corresponding closed pattern of objects is called a concept.
Concept learning [17, 27] has led to classification tasks and clustering processes.
We use this connection in this article through the link it provides between the
search spaces 2A and 2O.

Example 1. In Fig. 1, the closed objects sets are ∅, o3, o1o2, and o1o2o3. The
closed itemsets are a2a3, a2a3a4, a1a2a3 and a1a2a3a4. Since g(o1o2) = a1a2a3
and f(a1a2a3) = o1o2, (a1a2a3, o1o2) is a concept. The others are (a2a3, o1o2o3),
(a2a3a4, o3), (a1a2a3a4, ∅).

Closed sets of attributes are very useful for algorithms with support con-
straint, because they share, as maximal element of the equivalence class ra ,

94 B. Jeudy and F. Rioult

the same frequency with all patterns in the class. Closed set mining is now well
known [12], and frequent closed patterns are known to be less numerous than
frequent patterns [5, 9]. Today’s approaches relate to closed sets with constraints
mining [3]. These patterns are good candidates for constituting relevant concepts,
which associate at the same time the attributes and the objects. For example,
biologists want to constraint their search to attribute patterns containing some
specific genes, with a specified maximum length. They also will be interested in
analyzing the other part of the concept. We specifically address here the problem
of constrained closed mining in databases with more attributes than objects.

3 Constraint Transposition

Most algorithms extracting closed patterns are search algorithms. The size of
the search space strongly determines their performance [12]. In our context, the
object space 2O is smaller than the attribute space 2A. We therefore choose to
search the closed patterns in the smaller space (2O) by transposing the database.
In order to mine under constraint, we study in this section how we can adapt con-
straints to the new transposed database, i.e., how we can transpose constraints.
We will therefore answer question 2 of the introduction.

3.1 Definition and Properties

Given an itemset constraint C, we want to extract the collection I of itemsets,
I = {A ⊆ A | C(A)}. Therefore, we want to find in the transposed database a
collection T of object sets (if it exists) such that the image by f of this collection
is I, i.e., {f(O) | O ∈ T} = I. Since f(O) is always a closed itemset, this is only
possible if the collection I contains only closed itemsets (i.e., if the constraint
C includes the Cclose constraint). In this case, a solution for T is the collection
{O ⊆ O | C(f(O))} which leads to the following definition of a transposed con-
straint:

Definition 1 (Transposed Constraint). Given a constraint C, we define the
transposed constraint tC on a closed pattern O of objects as:

tC(O) = C(f(O)).

Example 2. Consider the itemset constraint C(A) = (a1 ∈ A). Its transposed
constraint is (by definition) tC(O) = (a1 ∈ f(O)). Using the dataset of Tab. 1,
the object sets that satisfy tC are T = {o1, o2, o1o2, o1o3, o2o3, o1o2o3}. If we
compute {f(O) | O ∈ T}, we get {a1a2a3, a1a2a3a4} which are exactly the closed
itemsets that satisfy C. Theorem 1 will show that this is always the case.

It is interesting to study the effect of transposition w.r.t. the monotonicity
or anti-monotonicity of constraints, since many mining algorithms rely on them
for efficient pruning:

Database Transposition for Constrained (Closed) Pattern Mining 95

Proposition 1. If a constraint C is monotonic (resp. anti-monotonic), the trans-
posed constraint tC is anti-monotonic (resp. monotonic).

Proof: f and g are decreasing (Prop. 1), which inverts monotonicity and
anti-monotonicity. �

Since we also want to deal with complex constraints (i.e., constraints built
with elementary constraints using boolean operators), we need the following:

Proposition 2. If C and C′ are two constraints then:

t(C ∧ C′) = tC ∧ tC′

t(C ∨ C′) = tC ∨ tC′

t(¬C) = ¬tC
Proof: For the conjunction: t(C ∧ C′)(O) = (C ∧ C′)(f(O)) = C(f(O)) ∧
C′(f(O)) = (tC ∧ tC′)(O). The proof is similar for the disjunction and the
negation. �

Many algorithms deal with conjunctions of anti-monotonic and monotonic
constraints. The two last propositions mean that these algorithms can be used
with the transposed constraints since the transposed constraint of the conjunc-
tion of a monotonic and an anti-monotonic constraint is the conjunction of a
monotonic and an anti-monotonic constraint! The last proposition also helps in
building the transposition of a composed constraint. It is useful for the algebrai-
sation [22] of the constraint mining problem, where constraints are decomposed
in disjunctions and conjunctions of elementary constraints.

3.2 Transposed Constraints of Some Classical Constraints

In the previous section, we gave the definition of the transposed constraint. In
this definition (tC(O) = C(f(O))), in order to test the transposed constraint on
an object set O, it is necessary to compute f(O) (to come back in the attribute
space) and then to test C. This means that a mining algorithm using this con-
straint must maintain a dual context, i.e., it must maintain for each object set O
the corresponding attribute set f(O). Some algorithms already do this, for in-
stance algorithms which use the so called vertical representation of the database
(like CHARM [28]). For some classical constraints however, the transposed con-
straint can be rewritten in order to avoid the use of f(O). In this section, we
review several classical constraints and try to find a simple expression of their
transposed constraint in the object space.

Let us first consider the minimum frequency constraint: the transposed con-
straint of Cγ-freq(A) = (F(A) > γ) is, by definition 1, tCγ-freq(O) = (F(f(O)) >
γ). By definition of frequency, F(f(O)) = |g(f(O))| = |cl(O)| and if O is a closed
object set, cl(O) = O and therefore tCγ-freq(O) = (|O| > γ). Finally, the trans-
posed constraint of the minimum frequency constraint is the “minimum size”

96 B. Jeudy and F. Rioult

constraint. The CARPENTER [18] algorithm uses this property and mines the
closed patterns in a divide-and-conquer strategy, stopping when the length of
the object set drops below the threshold.

The next two propositions give the transposed constraints of two other clas-
sical constraints : the subset and superset constraints:

Proposition 3 (Subset Constraint Transposition). Let C⊆E be the con-
straint defined by: C⊆E(A) = (A ⊆ E) where E is a constant itemset. Then if E
is closed (O is an object set):

tC⊆E(O) ⇔ g(E) ⊆ cl(O)

and if E is not closed
tC⊆E(O) ⇒ g(E) ⊆ cl(O).

Proof: tC⊆E(O) ⇔ C⊆E(f(O)) ⇔ (f(O) ⊆ E) ⇒ (g(E) ⊆ g(f(O))) ⇔
(g(E) ⊆ cl(O)). Conversely (if E is closed): (g(E) ⊆ g(f(O))) ⇒ (f(O) ⊆
cl(E)) ⇒ (f(O) ⊆ E). �

Proposition 4 (Superset Constraint Transposition). Let C⊇E be the con-
straint defined by: C⊇E(A) = (A ⊇ E) where E is a constant itemset. Then:

tC⊇E(O) ⇔ g(E) ⊇ cl(O).

Proof: tC(O) ⇔ (E ⊆ f(O)) ⇒ (g(f(O)) ⊆ g(E)) ⇔ (cl(O) ⊆ g(E)).
Conversely, (g(f(O)) ⊆ g(E) ⇒ (fg(E) ⊆ fgf(O)) ⇒ fg(E) ⊆ f(O) ⇒
cl(E) ⊆ f(O) ⇒ E ⊆ f(O). �

These two syntactical constraints are interesting because they can be used
to construct many other kind of constraints. In fact, all syntactical constraints
can be build on top of these using conjunctions, disjunctions and negations.
With the proposition 2, it is then possible to compute the transposition of many
syntactical constraints. Besides, these constraints have been identified in [13, 4]
to formalize dataset reduction techniques.

Table 2 gives the transposed constraints of several classical constraints if
the object set O is closed (this is not an important restriction since we will
use only closed itemsets extraction algorithms). These transposed constraints
are easily obtained using the two previous propositions on the superset and the
subset constraints and Prop. 2. For instance, if C(A) = (A∩E �= ∅), this can be
rewritten A �⊆ E (E denotes the complement of E, i.e.A\E) and then ¬(A ⊆ E).
The transposed constraint is therefore, using Prop. 2 and 3, ¬(g(E) ⊆ O) (if E
is closed) and finally g(E) �⊆ O. If E is not closed, then we write E = {e1, ..., en}
and we rewrite the constraint C(A) = (e1 ∈ A ∨ e2 ∈ A ∨ ... ∨ en ∈ A) and
then, using Prop. 2 and 4, we obtain the transposed constraint tC(O) = (O ⊆
g(e1) ∨ ... ∨ O ⊆ g(en)). These expressions are interesting since they do not
involve the computation of f(O). Instead, there are g(E) or g(ei) ... However,
since E is constant, these values need to be computed only once (during the first
database pass, for instance).

Database Transposition for Constrained (Closed) Pattern Mining 97

Table 2. Transposed constraints of some classical constraints. A is a variable closed
itemset, E = {e1, e2, ..., en} a constant itemset, O a variable closed object set and
E = A \ E = {f1, f2, ..., fm}

Itemset constraint C(A) Transposed constraint tC(O)
F(A) θ α |O| θ α
A ⊆ E if E is closed: g(E) ⊆ O

else: O 	⊆ g(f1) ∧ ... ∧ O 	⊆ g(fm)
E ⊆ A O ⊆ g(E)
A 	⊆ E if E is closed: g(E) 	⊆ O

else: O ⊆ g(f1) ∨ ... ∨ O ⊆ g(fm)
E 	⊆ A O 	⊆ g(E)

A ∩ E = ∅ if E is closed: g(E) ⊆ O
else: O 	⊆ g(e1) ∧ ... ∧ O 	⊆ g(en)

A ∩ E 	= ∅ if E is closed: g(E) 	⊆ O
else: O ⊆ g(e1) ∨ ... ∨ O ⊆ g(en)

SUM(A) θ α Fp(O) θ α
MIN(A) θ α see text
MAX(A) θ α see text

θ ∈ {<, >, ≤, ≥}

Example 3. We show in this example how to compute the transposed constraints
with the database of Tab. 1. Let the itemset constraint C(A) = (A∩a1a4 �= ∅). In
the database of Tab. 1, the itemset a1a4 = a2a3 is closed. Therefore, the trans-
posed constraint is (Tab. 2) tC(O) = (g(a2a3) �⊆ O). Since g(a2a3) = o1o2o3,
tC(O) = (o1o2o3 �⊆ O). The closed object sets that satisfy this constraint are T =
{∅, o1o2, o3}. If we apply f to go back to the itemset space: {f(O) | O ∈ T} =
{a1a2a3a4, a1a2a3, a2a3a4} which are, as expected (and proved by Th. 1), the
closed itemset which satisfy C.

Consider now the constraint C(A) = (A∩a1a2 �= ∅). In this case, a1a2 = a3a4
is not closed. Therefore, we use the second expression in Tab. 2 to compute
its transposition. tC(O) = (O ⊆ g(a1) ∨ O ⊆ g(a2)). Since g(a1) = o1o2 and
g(a2) = o1o2o3, tC(O) = (O ⊆ o1o2 ∨ O ⊆ o1o2o3) which can be simplified in
tC(O) = (O ⊆ o1o2o3). All the closed object sets satisfy this constraint tC, which
is not surprising since all the closed itemsets satisfy C.

Our last example is the constraint C(A) = (|A ∩ a1a2a4| ≥ 2). It can be
rewritten C(A) = ((a1a2 ⊆ A) ∨ (a1a4 ⊆ A) ∨ (a2a4 ⊆ A)). Using Prop. 2 and
Tab. 2 we get tC(O) = ((O ⊆ g(a1a2)) ∨ (O ⊆ g(a1a4)) ∨ (O ⊆ g(a2a4))) which
is tC(O) = ((O ⊆ o1o2) ∨ (O ⊆ ∅) ∨ (O ⊆ o3)). The closed object sets satisfying
tC are T = {∅, o1o2, o3} and {f(O) | O ∈ T} = {a1a2a3a4, a1a2a3, a2a3a4}.

Other interesting constraints include aggregate constraints [16]. If a numerical
value a.v is associated to each attribute a ∈ A, we can define constraints of the
form SUM(A) θ α for several aggregate operators such as SUM, MIN, MAX or
AVG, where θ ∈ {<, >,≤,≥} and α is a numerical value. In this case, SUM(A)
denotes the sum of all a.v for all attributes a in A.

98 B. Jeudy and F. Rioult

The constraints MIN(A) θ α and MAX(A) θ α are special cases of the con-
straints of Tab. 2. For instance, if supα = {a ∈ A | a.v > α} then MIN(A) > α
is exactly A ⊆ supα and MIN(A) ≤ α is A �⊆ supα. The same kind of rela-
tion holds for MAX operator: MAX(A) > α is equivalent to A ∩ supα �= ∅ and
MAX(A) ≤ α is equivalent to A ∩ supα = ∅. In this case, since α is a constant,
the set supα can be pre-computed.

The constraints AVG(A) θ α and SUM(A) θ α are more difficult. Indeed, we
only found one expression (without f(O)) for the transposition of SUM(A) θ α.
Its transposition is tC(O) = (SUM(f(O)) θ α). In the database, f(O) is a set of
attributes, so in the transposed database, it is a set of rows and O is a set of
columns. The values a.v are attached to rows of the transposed database, and
SUM(f(O)) is the sum of these values for the rows containing O. Therefore,
SUM(f(O)) is a pondered frequency of O (in the transposed database) where
each row a, containing O, contributes for a.v in the total (we denote this pon-
dered frequency by Fp(O)). It is easy to adapt classical algorithms to count this
pondered frequency. Its computation is the same as the classical frequency ex-
cept that each row containing the counted itemset does contribute with a value
different from 1 to the frequency.

4 Closed Itemsets Mining

In a previous work [23] we showed the complementarity of the set of concepts
mined in the database, with constraining the attribute patterns, and the set
of concepts mined in the transposed database with the negation of the trans-
posed constraint, when the original constraint is anti-monotonic. The transposed
constraint had to be negated in order to ensure the anti-monotonicity of the
constraint used by the algorithm. This is important because we can keep usual
mining algorithms which deal with anti-monotonic constraint and apply them
in the transposed database with the negation of the transposed constraint. We
also showed [24] a specific way of mining under monotonic constraint, by sim-
ply mining the transposed database with the transposed constraint (which is
anti-monotonic). In this section, we generalize these results for more general
constraints.

We define the constrained closed itemset mining problem: Given a
database db and a constraint C, we want to extract all the closed itemsets (and
their frequencies) satisfying the constraint C in the database db. More formally,
we want to compute the collection:

{(A,F(A, db)) | C(A, db) ∧ Cclose(A, db)} .

The next theorem shows how to compute the above solution set using the
closed object patterns extracted in the transposed database, with the help of the
transposed constraint.

Theorem 1.

{A | C(A) ∧ Cclose(A)} =
{
f(O) | tC(O) ∧ Cclose(O)

}
.

Database Transposition for Constrained (Closed) Pattern Mining 99

Proof: By def. 1, {f(O) | tC(O) ∧ Cclose(O)} = {f(O) | C(f(O)) ∧ Cclose(O)}
= {A | ∃O s.t. C(A) ∧A = f(O)} = {A | C(A) ∧ Cclose(A)}. �

This theorem means that if we extract the collection of all closed object
patterns satisfying tC in the transposed database, then we can get all the closed
patterns satisfying C by computing f(O) for all the closed object patterns. The
fact that we only need the closed object patterns and not all the object patterns is
very interesting since the closed patterns are less numerous and can be extracted
more efficiently (see CHARM [28], CARPENTER [18], CLOSET[21] or [7]). The
strategy, which we propose for computing the solution of the constraint closed
itemset mining problem, is therefore:

1. Compute the transposed constraint tC using Tab. 2 and Prop. 2. This step
can involve the computation of some constant object sets g(E) used in the
transposed constraint.

2. Use one of the known algorithms to extract the constrained closed sets of
the transposed database. Most closed set extraction algorithms do not use
constraints (like CLOSE, CLOSET or CARPENTER). However, it is not
difficult to integrate them (by adding more pruning steps) for monotonic or
anti-monotonic constraints. In [7], another algorithm to extract constrained
closed sets is presented.

3. Compute f(O) for each extracted closed object pattern. In fact, every algo-
rithm already computes this when counting the frequency2 of O, which is
|f(O)|. The frequency of f(O) (in the original database) is simply the size
of O and can therefore be provided without any access to the database.

The first and third steps can indeed be integrated in the core of the mining
algorithm, as it is done in the CARPENTER algorithm (but only with the
frequency constraint).

Finally, this strategy shows how to perform constrained closed itemset min-
ing by processing all the computations in the transposed database, and using
classical algorithms.

5 Itemsets Mining

In this section, we study how to extract all the itemsets that satisfy a user
constraint (and not only the closed ones). We define the constrained itemset
mining problem : Given a database db and a constraint C, we want to extract
all the itemsets (and their frequencies) satisfying the constraint C in the database
db. More formally, we want to compute the collection:

{(A,F(A, db)) | C(A, db)} .

In the previous section, we gave a strategy to compute the closed itemsets
satisfying a constraint. We will of course make use of this strategy. Solving the

2 This is the frequency in the transposed database.

100 B. Jeudy and F. Rioult

constrained itemset mining problem will involve three steps : Given a database
db and a constraint C,
1. find a constraint C′,
2. compute the collection {(A,F(A, db)) | C′(A, db) ∧ Cclose(A, db)} of closed sets

satisfying C′ using the strategy of Sec. 4,
3. compute the collection {(A,F(A, db)) | C(A, db)} of all the itemsets satisfying
C from the closed ones satisfying C′.

We will study the first step in the next subsection and the third one in
Sec. 5.2, but first we will show why it is necessary to introduce a new constraint
C′. Indeed, it is not always possible to compute all the itemsets that satisfy C
from the closed sets that satisfy C. Let us first recall how the third step is done
in the classical case where C is the frequency constraint [19]:

The main used property is that all the itemsets of an equivalence class have
the same frequency than the closed itemset of the class. Therefore, if we know
the frequency of the closed itemsets, it is possible to deduce the frequency of
non-closed itemsets provided we are able to know in which class they belong.
The regeneration algorithm of [19] use a top down approach. Starting from the
largest frequent closed itemsets, it generates their subsets and assign them their
frequencies, until all the itemsets have been generated.

Now, assume that the constraint C is not the frequency constraint and that we
have computed all the closed itemsets (and their frequencies) that satisfy C. If an
itemset satisfies C, it is possible that its closure does not satisfies it. In this case,
it is not possible to compute the frequency of this itemset from the collection
of the closed itemsets that satisfy C (this is illustrated in Fig. 2). Finally, the
collection of the closed itemsets satisfying C is not sufficient to generate the
non-closed itemsets. In the next section, we show how the constraint C can be
relaxed to enable the generation all the non-closed itemsets satisfying it.

5.1 Relaxation of the Constraint

In order to be able to generate all the itemsets from the closed ones, it is necessary
to have at least the collection of closed itemsets of all the equivalence classes
that contain an itemset satisfying the constraint C. This collection is also the
collection of the closures of all itemsets satisfying C : {cl(A) | C(A, db)}.

We must therefore find a constraint C′ such that {cl(A) | C(A, db)} is included
in {A | C′(A, db) ∧ Cclose(A)}. We call such a C′ constraint a good relaxation
of C (see Fig. 3). If we have an equality instead of the inclusion, we call C′ an
optimal relaxation of C. For example, the constant “true” constraint (which
is true on all itemset) is a good relaxation of any constraint, however it is not
very interesting since it will not provide any pruning opportunity during the
extraction of step 2.

If the closed itemsets (and their frequencies) satisfying an optimal relaxation
of C are computed in step 2, we will have enough information for regenerating
all itemsets satisfying C in step 3. However it is not always possible to find such
an optimal relaxation. In this case, we can still use a good relaxation in step 2.

Database Transposition for Constrained (Closed) Pattern Mining 101

1

5

3

4

6

2

Fig. 2. The dots represent itemsets, the x are closed itemsets, the lines enclose the
equivalence classes. The itemsets inside the region delimited by the dashed line satisfy
the constraint C and the others do not. The closed sets satisfying C are the closed sets
of classes 3, 4 and 5. They will enable to generate the itemsets of these three classes.
However, to get the two itemsets of class 2, we need the closed itemset of this class
which does not satisfy C. Therefore, in this case, having the closed itemsets satisfying
C is not enough to generate all itemsets satisfying C

1

5

3

4

6

2

Fig. 3. An optimal relaxation of C. The constraint C is represented by the solid line
and an optimal relaxation is represented by the dashed line

In this case, some superfluous closed itemsets will be present in the collection
and will have to be filtered out in step 3.

We will now give optimal relaxation for some classical constraints, and we
start with two trivial cases:

102 B. Jeudy and F. Rioult

Proposition 5. The optimal relaxation of a monotonic constraint is the con-
straint itself and the optimal relaxation of the frequency constraint is the fre-
quency constraint itself.

Proof: Let C be a monotonic constraint or a frequency constraint. We only
have to prove that if an itemset A satisfy C then cl(A) also. If C is monotonic,
this is true since S ⊆ cl(S) (Prop. 1. If C is a minimum frequency constraint,
it is true because A and cl(A) have the same frequency. �

The next proposition is used to compute the relaxation of a complex con-
straint from the relaxation of simple constraints.

Proposition 6. If C1 and C2 are two constraints and C′
1 and C′

2 are optimal
relaxation of them, then :

– C′
1 ∨ C′

2 is an optimal relaxation of C1 ∨ C2 and
– C′

1 ∧ C′
2 is a good relaxation of C1 ∧ C2.

Proof: A constraint C′ is a good relaxation of a constraint C if and only if
∀A, C(A) ⇒ C′(cl(A)). To prove that it is an optimal relaxation, we must
also prove that if A is closed and satisfies C′ then there exists an itemset B
satisfying C such that cl(B) = A (cf. definitions). We will use this two facts
in our proofs.

Let A be an itemset satisfying C1 ∧ C2. This means that A satisfies C1
and C2. Therefore, cl(A) satisfies C′

1 and C′
2, i.e., cl(A) satisfies C′

1 ∧ C′
2.This

means that C′
1 ∧ C′

2 is a good relaxation of C1 ∧ C2.
We can prove similarly that C′

1 ∨ C′
2 is a good relaxation of C1 ∨ C2. Let

us now prove that it is optimal: Let A be a closed itemset satisfying C′
1∨C′

2.
Then A satisfies C′

1 or C′
2, suppose that it satisfies C′

1. Since C′
1 is an optimal

relaxation of C1, there exists B satisfying C1 such that cl(B) = A. Therefore
B satisfies C1 ∨ C2 and cl(B) = A. �

We found no relaxation for the negation of a constraint but this is not a
problem. If the constraint is simple (i.e., in Tab. 2) its negation is also in the
table and if it is complex, then we can “push” the negation into the constraint
as shown in the next example.

Example 4. Let C(A) = (¬(((F(A) > 3) ∧ (A �⊆ E)) ∨ (A ∩ F = ∅))) where
E and F are two constant itemsets. We can push the negation and we get:
C(A) = ((¬(F(A) > 3) ∨ ¬(A �⊆ E)) ∧ ¬(A ∩ F = ∅)), and finally :

C(A) = (((F(A) ≤ 3) ∨ (A ⊆ E)) ∧ (A ∩ F �= ∅)).
Then with Prop. 5, 6 and Tab. 3, we can compute a good relaxation C′ of C:

C′(A) = (((F(A) ≤ 3) ∨ (A ⊆ cl(E))) ∧ (A ∩ F �= ∅)).
Table 3 gives good relaxation of the other constraints of Tab. 2 which are

not covered by the previous proposition (i.e., which are not monotonic) except
for the non-monotonic constraints involving SUM for which we did not find any
interesting (i.e., other than the constant true constraint) good relaxation.

Database Transposition for Constrained (Closed) Pattern Mining 103

Table 3. Good relaxation of some classical constraints. A is a variable closed itemset,
E = {e1, e2, ..., en} a constant itemset

Itemset constraint C(A) Good relaxation C′(A)
A ⊆ E A ⊆ cl(E)
E 	⊆ A A ⊆ cl(e1) ∨ A ⊆ cl(e2) ∨ ... ∨ A ⊆ cl(en)

A ∩ E = ∅ A ⊆ cl(E)
MIN(A) > α A ⊆ cl(supα)
MAX(A) < α A ⊆ cl(supeqα)

Proof: We prove here the results given in Tab. 3.
C(A) = (A ⊆ E), C′(A) = (A ⊆ cl(E)): If A ⊆ E then cl(A) ⊆ cl(E). This
means that C(A) ⇒ C′(cl(A)) therefore C′ is a good relaxation of C.
C(A) = (A ∩ E = ∅): C can be rewritten C(A) = (A ⊆ E) and the previous
case applies with E instead of E.

C(A) = (E �⊆ A): If E = {e1, e2, ..., en}, this constraint can be rewritten
{e1} �⊆ A∨{e2} �⊆ A∨. . .∨{en} �⊆ A which is also A ⊆ {e1}∨. . .∨A ⊆ {en}.
Then the first case and Prop 6 give the result.

C(A) = (MIN(A) > α) and C(A) = (MAX(A) < α): C(A) = (MIN(A) > α)
can be rewritten A ⊆ supα with supα = {a ∈ A | a.v > α} and we are in
the first case. C(A) = (MAX(A) < α) can be rewritten A∩ supeqα = ∅ with
supeqα = {a ∈ A | a.v ≥ α} and we are in the second case. �

5.2 Regeneration

Given a database db and a constraint C, we suppose in this section that a col-
lection {(A,F(A, db)) | C′(A, db) ∧ Cclose(A, db)} of closed itemsets (and their fre-
quencies) satisfying a good relaxation C′ of C is available. The aim is to compute
the collection {(A,F(A, db)) | C(A, db)} of all itemset satisfying C (and their
frequencies).

If C is a minimum frequency constraint, C is an optimal relaxation of it-
self, therefore we take C′ = C. The regeneration algorithm is then the classical
algorithm 6 of [19]. We briefly recall this algorithm:

We suppose that the frequent closed itemsets (and their frequencies) of size i
are stored in the list Li for 0 < i ≤ k where k is the size of the longest frequent
closed itemset. At the end of the algorithm, each Li contains all the frequent
itemsets of size i and their frequencies.

1 for (i = k; i > 0; i−−)
2 forall A ∈ Li

3 forall subset B of size (i− 1) of A
4 if B �∈ Li−1
5 B.freq = A.freq
6 Li−1 = Li−1 ∪ {B}

104 B. Jeudy and F. Rioult

7 endif
8 end
9 end
10 end

If C′ is not the frequency constraint, this algorithm generates all the subsets
of the closed itemsets satisfying C′ and two problems arise:

1. Some of these itemsets do not satisfy C. For instance, in Fig. 3, all the
itemsets of classes 2, 3, 4, 5 and 6 are generated (because they are subsets of
closed itemsets that satisfy C′) and only those of classes 3 and 4 and some
of classes 2 and 5 satisfy C.

2. The frequency computed in step 5 of the above algorithm for B is correct
only if the closure of B is in the collection of the closed sets at the beginning
of the algorithm. If it is not, then this computed frequency is smaller than
the true frequency of B. In Fig. 3, this means that the computed frequency
of the itemsets of class 6 are not correct.

However, the good news is that all the itemsets satisfying C are generated
(because C′ is a good relaxation of C) and their computed frequencies are correct
(because their closures belongs to the Li at the beginning).

A last filtering phase is therefore necessary to filter out all the generated
itemsets that do not satisfy C. This phase can be pushed inside the above gen-
eration algorithm if the constraint C has good properties (particularly if it is a
conjunction of a monotonic part and an anti-monotonic one). However, we will
not detail this point here.

We are still facing a last problem: to test C(A), we can need F(A). However,
if C(A) is false, it is possible that the computed frequency of A is not correct.
To solve this problem, we propose the following strategy.

We assume that the constraint C is a Boolean formula built using the atomic
constraints listed in Tab. 2 and using the two operators ∧ and ∨ (if the ¬ operator
appears, it can be pushed inside the formula as shown in Ex. 4). Then, we rewrite
this constraint in disjunctive normal form (DNF), i.e., C = C1∨C2∨ . . .∨Cn with
Ci = Ami−1+1 ∧ . . . ∧ Ami

where each Ai is a constraint listed in Tab. 2.
Now, consider an itemset A whose computed frequency is f (with f ≤ F(A)).

First, we consider all the conjunction Ci that we can compute, this include those
where F(A) does not appear and those of the form F(A) > α or F(A) < α
where α < f (in this two cases we can conclude since F(A) ≥ f). If one of them
is true, then C(A) is true and A is not filtered out.

If all of them are false, we have to consider the remaining conjunctions of the
form A1 ∧ . . . ∧ (F(A) > α) ∧ . . . with α ≥ f . If one of the Ai is false, then the
conjunction is false. If all are true, we suppose that F(A) > α: in this case C(A)
is true and therefore F(A) = f which contradict α ≥ f . Therefore, F(A) > α is
false and also the whole conjunction.

If it is still impossible to answer, it means that all the conjunctions are false,
and that there are conjunction of the form A1 ∧ . . . ∧ (F(A) < α) ∧ . . . with

Database Transposition for Constrained (Closed) Pattern Mining 105

α ≥ f . In this case, it is not possible to know if C(A) is true without computing
the frequency F(A).

Finally, all this means that if there is no constraints of the form F(A) < α in
the DNF of C, we can do this last filtering phase efficiently. If it appears, then
the filtering phase can involve access to the database to compute the frequency
of some itemsets. Of course, all these frequency computation should be made in
one access to the database.

Example 5. In this example, we illustrate the complete process of the resolution
of the constrained itemset mining problem on two constraints (we still use the
dataset of Tab. 1):

C(A) = ((F(A) > 1) ∨ (a1 ∈ A)).

This constraint is its own optimal relaxation (cf. Prop. 5 and 6). According
to Tab. 2 and Prop. 2, its transposed constraint is tC(O) = ((|O| > 1) ∨ (O ⊆
g(a1))) and g(a1) = o1o2. The closed objects sets that satisfy this constraints
are T = {o1o2, o1o2o3, ∅}. If we apply f to go back to the itemset space:
{f(O) | O ∈ T} = {a1a2a3a4, a1a2a3, a2a3}. Since this set contains a1a2a3a4,
all the itemsets are generated. However, the generated frequency for the item-
sets of the class of a2a3a4 is 0. The other generated frequencies are correct. C
is in DNF with two simple constraints (F(A) > 1) and (a1 ∈ A). During the
filtering step, when considering the itemsets of a2a3a4’s class, the second con-
straint is always true. Since the generated frequency f is 0 and α is 1, α > f and
therefore these itemsets must be filtered out. Finally, the remaining itemsets are
exactly those that satisfy C.

C(A) = ((F(A) > 1) ∧ (A ⊆ a2a4)).

A good relaxation of C is C′(A) = ((F(A) > 1) ∧ (A ⊆ cl(a2a4))) = ((F(A) >
1)∧(A ⊆ a2a3a4)). The corresponding transposed constraint is tC′(O) = ((|O| >
1)∧(g(a2a3a4) ⊆ O)) = ((|O| > 1)∧(o3 ⊆ O)) since a2a3a4 is closed. The closed
objects sets that satisfy this constraints are T = {o1o2o3}. If we apply f to go
back to the itemset space: {f(O) | O ∈ T} = {a2a3}. Then all the subsets of
a2a3 are generated and only ∅ and a2 remains after the filtering step.

6 Conclusion

In order to mine constrained closed patterns in databases with more columns
than rows, we proposed a complete framework for the transposition: we gave
the expression in the transposed database of the transposition of many classical
constraints, and showed how to use existing closed set mining algorithms (with
few modifications) to mine in the transposed database.

Then we gave a strategy to use this framework to mine all the itemset satisfy-
ing a constraint when a constrained closed itemset mining algorithm is available.

106 B. Jeudy and F. Rioult

This strategy consists of three steps: generation of a relaxation of the constraint,
extraction of the closed itemset satisfying the relaxed constraint and, finally, gen-
eration of all the itemsets satisfying the original constraint.

We can therefore choose the smallest space between the object space and the
attribute space depending on the number of rows/columns in the database. Our
strategy gives new opportunities for the optimization of mining queries (also
called inductive queries) in contexts having a pathological size. This transposi-
tion principle could also be used for the optimization of sequences of queries: the
closed object sets computed in the transposed database during the evaluation of
previous queries can be stored in a cache and be re-used to speed up evaluation
of new queries in a fashion similar to [15].

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, 1996.

2. Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal
non-redundant association rules using frequent closed itemsets. In Proc. Compu-
tational Logic, volume 1861 of LNAI, pages 972–986, 2000.

3. J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of formal
concepts in transactional data. In Proc. PAKDD, 2004. to appear.

4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data
reduction in constrained pattern mining. In PKDD’03, 2003.

5. E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On the complexity of gener-
ating maximal frequent and minimal infrequent sets. In Symposium on Theoretical
Aspects of Computer Science, pages 133–141, 2002.

6. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets : a condensed representation
of boolean data for the approximation of frequency queries. DMKD, 7(1), 2003.

7. J.-F. Boulicaut and B. Jeudy. Mining free-sets under constraints. In Proc. IDEAS,
pages 322–329, 2001.

8. C. Bucila, J. Gehrke, D. Kifer, and W. White. Dualminer: a dual-pruning algorithm
for itemsets with constraints. In Proc. SIGKDD, pages 42–51, 2002.

9. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc.
PKDD, volume 2431 of LNAI, pages 74–85, 2002.

10. L. de Raedt and S. Kramer. The levelwise version space algorithm and its appli-
cation to molecular fragment finding. In Proc. IJCAI, pages 853–862, 2001.

11. G. Dong and J. Li. Efficient mining of emerging patterns : discovering trends and
differences. In Proc. SIGKDD, pages 43–52, 1999.

12. H. Fu and E. M. Nguifo. How well go lattice algorithms on currently used machine
learning testbeds ? In 1st Intl. Conf. on Formal Concept Analysis, 2003.

13. B. Goethals and J. V. den Bussche. On supporting interactive association rule
mining. In DAWAK’00, 2000.

14. B. Jeudy and J.-F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis, 6(4):341–357, 2002.

15. B. Jeudy and J.-F. Boulicaut. Using condensed representations for interactive
association rule mining. In Proc. PKDD, volume 2431 of LNAI, 2002.

16. R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In SIGMOD, 1998.

Database Transposition for Constrained (Closed) Pattern Mining 107

17. E. M. Nguifo and P. Njiwoua. GLUE: a lattice-based constructive induction system.
Intelligent Data Analysis, 4(4):1–49, 2000.

18. F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki. CARPENTER: Finding
closed patterns in long biological datasets. In Proc. SIGKDD, 2003.

19. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, Jan. 1999.

20. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible
constraints. In Proc. ICDE, pages 433–442, 2001.

21. J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for mining frequent
closed itemsets. In Proc. DMKD workshop, 2000.

22. L. D. Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query
answering (extended abstract). In Proc. ICDM, pages 123–130, 2002.

23. F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson. Using transposition for
pattern discovery from microarray data. In DMKD workshop, 2003.

24. F. Rioult and B. Crémilleux. Optimisation of pattern mining : a new method
founded on database transposition. In EIS’04, 2004.

25. A. Soulet, B. Crémilleux, and F. Rioult. Condensed representation of emerging
patterns. In Proc. PAKDD, 2004.

26. B. Stadler and P. Stadler. Basic properties of filter convergence spaces. J. Chem.
Inf. Comput. Sci., 42, 2002.

27. R. Wille. Concept lattices and conceptual knowledge systems. In Computer math-
ematic applied, 23(6-9):493-515, 1992.

28. M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proc. SDM, 2002.

An Efficient Algorithm for Mining String
Databases Under Constraints�

Sau Dan Lee and Luc De Raedt

Institute for Computer Science,
University of Freiburg, Germany

{danlee, deraedt}@informatik.uni-freiburg.de

Abstract. We study the problem of mining substring patterns from
string databases. Patterns are selected using a conjunction of mono-
tonic and anti-monotonic predicates. Based on the earlier introduced
version space tree data structure, a novel algorithm for discovering sub-
string patterns is introduced. It has the nice property of requiring only
one database scan, which makes it highly scalable and applicable in dis-
tributed environments, where the data are not necessarily stored in local
memory or disk. The algorithm is experimentally compared to a previ-
ously introduced algorithm in the same setting.

1 Introduction

In recent years, the number of string databases (particularly, in bioinformatics)
has grown enormously [1]. One of the motivations for constructing and maintain-
ing these databases is the desire to discover new knowledge from these databases
using data mining techniques. While more traditional data mining techniques,
such as frequent itemset mining [2] and frequent sequence mining [3], can be
adapted to mine string databases, they do not take advantage of some proper-
ties specific to strings to accelerate the mining process. By specifically targeting
string databases, it should be possible to devise more effective algorithms for
discovering string patterns.

The most important contribution of this paper is the introduction of a novel
algorithm, called FAVST, for mining string patterns from string databases. This
algorithm combines ideas from data mining with string processing principles.
More specifically, we employ ideas from suffix trees [4, 5] to represent and com-
pute the set of patterns of interest. The data structure used is that of Version
Space Trees (VST, introduced by [6]) to organize the set of substring patterns
being discovered. We have observed that a suffix trie can be treated as a deter-
ministic automata so that we can visit all the substring patterns contained in
a data string efficiently. We exploit this property of the suffix trie in VST and
devised the FAVST algorithm (see Sect. 5.2). This algorithm performs frequency

� This work was supported by the EU IST FET project cInQ, contract number IST-
2000-26469.

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 108–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Algorithm for Mining String Databases Under Constraints 109

counting in only one database scan. It is thus is especially efficient when database
access is slow (e.g. over the internet). We also compare FAVST with a more tra-
ditional level-wise data mining algorithm, called VST, that we developed earlier
[6]. As it employs the same data structure VST and the same setting as FAVST,
this provides an appropriate setting for comparison. Although FAVST consumes
more memory than VST our experiments (Sect. 6) show that the memory re-
quirements are relatively cheap by today’s hardware standards. Furthermore, as
we will show, it can be controlled by imposing an upper bound on the length of
patterns to be discovered, making FAVST very attractive in practice.

The two algorithmsFAVST andVSTdiscover allpatterns that satisfy a conjunc-
tive constraint or inductive query of the form A1 ∧ ...∧Am ∧M1 ∧ · · · ∧Mn where
the Ai’s and Mj ’s are anti-monotonic and monotonic predicates, respectively.

1.1 Related Works

The present work is to a large extent motivated by the earlier MolFea sys-
tem [7, 8], in which conjunctive queries (over anti-monotonic and monotonic
predicates) for molecular features were solved using a version space approach.
MolFea features are essentially strings that represent sequences of atoms and
bonds.

On the theoretical side, we have previously introduced a general theory [6, 9]
for mining of general patterns (not restricted to strings) satisfying a compli-
cated predicate, which is composed of anti-monotonic and monotonic ones us-
ing Boolean algebra (negation, conjunction and disjunction). In this theoretical
framework, one key component is an algorithm for efficiently discovering patterns
satisfying the conjunction of a set of anti-monotonic and monotonic predicates.
It is this component that we are addressing in this paper.

Furthermore, we have also generalized the concept of version spaces for per-
forming usual set operations [10]. This results in an algebraic framework for
handling general predicates composed of anti-monotonic and monotonic predi-
cates.

There has been a lot of work in frequent itemset mining under constraints.
In [11], a method for combining monotone and anti-monotone constraints is
presented. In [12], the database is filtered and compressed into a compact prefix
tree structure called the FP-tree and then frequent itemsets are computed from
directly from the data structure. This is not to be confused with our approach, in
which we base on a general theoretical framework that works not only itemsets,
but also many other pattern spaces. We do not only mine frequent patterns,
but any patterns in the pattern space that satisfy a conjunction of monotonic
and antimonotonic constraints. Moreover, our implemenation uses a suffix tree
rather than a prefix tree. The tree stores the string patterns being mined, rather
than (filtered) data items from the database. In [13], the use of the FP-tree with
several monotonic and anti-monotonic constraints is discussed. However, that
approach is specific for itemset patterns.

This work is also related to that of [14], which addresses the same setting
as VST and FAVST, i.e. mining strings under conjunctive constraints using the

110 S. Dan Lee and L. De Raedt

VST data structure. However, whereas VST and FAVST aim at minimizing the
number of scans of the string database, the approach of [14] aims at minimizing
the number of tests whether a string pattern covers an example. To this aim,
[14] employs cost functions and the resulting algorithm is entirely different. Also,
the algorithm by [14] is targeted at situations where testing whether a pattern
covers an example is computationally expensive and the underlying data sets
relatively small. These situations arise in e.g. graph mining, cf. [7].

The rest of this paper is organized as follows. Important definitions are in-
troduced in Sect. 2. We take a closer look into the search space of the problem
in Sect. 3 and describe a data structure to handle it in Sect. 4. Two algorithms
are devised to construct this data structure. They’re presented in Sect. 5. Our
approach are verified by experiments presented in Sect. 6. Finally, we come up
with conclusions in Sect. 7.

2 Definitions

2.1 Strings

Definition 1. A string s over an alphabet Σ is a sequence of symbols from Σ.
The length of a string s, denoted |s|, is the number of symbols in that sequence.
The unique string of length zero is called the empty string, denoted ε. The set
of all strings over an alphabet Σ is denoted Σ∗.

Definition 2. A substring s′ of s is a sequence of consecutive symbols taken
from s. We denote this relation as s′ � s. We also say that s is a superstring of
s′, or s � s′.

Example 3. With an alphabet of Σ = {a, b, c, d}, the following sequences are
valid strings: ε, “ab”, “abac”, “dbacd”. But “ae” is not a valid string over this
alphabet, as e �∈ Σ.

Note that � is a partial order relation. This fact is exploited in the design of our
algorithms in Sect. 5.

2.2 Database and Substring Patterns

Since our goal is to mine substring patterns from a database, we have to de-
fine these two terms first. Further, not all substring patterns are interesting. We
express the interestingness of the patterns using a predicate. Patterns not satis-
fying the predicate are considered to be uninteresting, and hence should not to
be generated.

Definition 4. A database D over an alphabet Σ is a bag (i.e. multi-set) of
strings over Σ.

Definition 5. A pattern s over an alphabet Σ is a string over Σ.

An Efficient Algorithm for Mining String Databases Under Constraints 111

Definition 6. A predicate P for substring patterns over Σ is a boolean function
on a substring pattern s ∈ Σ∗ and (sometimes) a database D.

We include D into the definition of predicates because our focus is mining
patterns in databases, although it turns out that database-independent predi-
cates are also useful in expressing the interestingness more precisely. In this latter
case, we can simply treat D as a dummy parameter of our predicate. When D
is a dummy parameter, we omit it for brevity.

Definition 7. Define two predicates:

substring of(s; t) ≡ s � t
superstring of(s; t) ≡ s � t

where t ∈ Σ∗ is a constant string.

Example 8. Using Σ = {a, b, c, d}, substring of(ab; abc) and superstring of(bcd;
bc) evaluate to true whereas substring of(cd; abc) and superstring of(b; bc) eval-
uate to false.

Note that a predicate may have other parameters, such as a constant string
as illustrated above, or a frequency threshold as shown below. We require these
extra parameters to be independent of the database D, so that they can be fitted
into our framework by the syntactic transformation P(s, D;x1,x2, . . . , xk) �→
Px1,x2,...,xk

(s, D).
Analogous to frequent itemset mining, we may express our interestingness in

frequent substring patterns by imposing a minimum occurrence frequency.

Definition 9. Given a database D over an alphabet Σ and a pattern string
s ∈ Σ∗, we define the frequency freq(s;D) to be the number of strings in D that
is a superstring of s. i.e.

freq(s, D) = |{d ∈ D|s � d}|
We define two predicates related to frequency.

Definition 10. Given a database D and an integer θ, define

minimum frequency(s, D; θmin) ⇐⇒ freq(s, D) ≥ θmin

maximum frequency(s, D; θmax) ⇐⇒ freq(s, D) ≤ θmax

When context is clear, we omit s and D and simply write minimum frequency(θ)
and maximum frequency(θ).

Example 11. Let Σ1 = {a, b, c, d} and D = {abc, abd, cd, d, cd}. With this
database, we have freq(abc) = 1, freq(cd) = 2, freq(c) = 3, freq(abcd) =
0. And trivially, freq(ε) = |D| = 5. Thus, the following predicates evaluate
to true: minimum frequency(c, D; 2), minimum frequency(cd, D; 2), maximum
frequency(abc, D; 2), maximum frequency(cd, D; 2).

112 S. Dan Lee and L. De Raedt

In some applications (e.g. MolFea [7]), it is useful to partition the database
D into different subsets D1, . . . , Dn and define frequency predicates that counts
only a subset of D. e.g. A1 = minimum frequency(s, D1; θ1) and M2 =maximum
frequency(s, D2; θ2). Then, we can construct a compound predicate P = A1∧M2
to mine the patterns that are frequent in the subset D1 but not in D2. Our
experiments in Sect. 6 make use of such a setting extensively.

2.3 The Substring Mining Problem

Definition 12. Given an alphabet Σ, a database D, and a predicate P, the
problem of Mining Substring Patterns is to find the set of substring patterns
over Σ satisfying P:

Sol(P,D,Σ∗) = {s ∈ Σ∗ | P(s;D)}

Example 13. Continuing from Example 11, let P1(s, D) ≡ minimum frequency(s,
D1; 2) ∧ superstring of(s; d). Then, we have Sol(P1,D1,Σ

∗
1) = {d, cd}.

3 The Search Space

To solve the problem of Mining Substring Patterns, one näıve approach is of
course a brute-force search: check all the substrings over Σ∗ against P and print
out the satisfying ones. However, since Σ∗ is countably infinite, one can never
exhaust the whole pattern space, although one can enumerate them in a certain
order.

A much better idea, as in itemset mining, is to exploit the structure of the
search space. It has already been mentioned in Sect. 2.1 that � is a partial order
relation. We will restrict the predicates to one of the following two types, or a
conjunction of any number of them.

Definition 14. An anti-monotonic predicate A is a predicate that satisfies:

∀s1, s2 ∈ Σ∗ such that s1 � s2, A(s2) ⇒ A(s1)

Definition 15. A monotonic predicate M is a predicate that satisfies:

∀s1, s2 ∈ Σ∗ such that s1 � s2, M(s1) ⇒M(s2)

Example 16. substring of and minimum frequency are anti-monotonic predicates
whereas superstring of and maximum frequency are monotonic predicates.

With a compound query P = (A1 ∧ · · · ∧ Am) ∧ (M1 ∧ · · · ∧ Mk), we can
rewrite it as P = A ∧M, where A = A1 ∧ · · · ∧ Am and M = M1 ∧ · · · ∧Mk.
Note that A is anti-monotonic and M is monotonic. Therefore, we only need to
consider predicates of the form A ∧M.

An Efficient Algorithm for Mining String Databases Under Constraints 113

While confining ourselves to predicates of this form may appear restrictive,
we should note that in most formulations of data mining problems in the past
years, an even more restrictive form of the predicate is used. For example, in
most frequent-itemset, frequent-sequence mining problems, only a minimum-
frequency predicate (anti-monotonic) is used. The consideration of using mono-
tonic predicates has appeared only recently, and is still a rarity. [15, 16] The
general conjunction of an arbitrary number of monotonic and anti-monotonic
predicate is seldom seen, either. Thus, our restricted form P = A∧M is already
quite expressive.

In previous works [6, 9], we suggested how to support queries that are arbi-
trary boolean functions of anti-monotonic and monotonic predicates. As shown
in those papers, mining patterns under of these arbitrary boolean predicates can
be reduced to the mining of predicates of the form P = A ∧M as well as some
set manipulation operations. The latter can be done efficiently (see Sect. 4.1).
The former is non-trivial, and is the most time-consuming step. So, in this paper,
we concentrate on the algorithms and performance issues, and restrict ourselves
mainly to the form P = A ∧M.

3.1 Version Space

Restricting the predicate to the form P = A ∧M, the set of solutions to the
Subsection Mining Problem Sol(P,D,Σ∗) turns out to be a version space [17]
under the � relation. This means that there exists two sets S, G ⊆ Σ∗ with the
following properties.

– S = {p ∈ Sol(P,D,Σ∗) | � ∃q ∈ Sol(P,D,Σ∗) such that p � q}
– G = {p ∈ Sol(P,D,Σ∗) | � ∃q ∈ Sol(P,D,Σ∗) such that q � p}
– ∀p ∈ Sol(P,D,Σ∗), ∃s ∈ S ∧ g ∈ G such that g � p � s
– ∀p, q, r ∈ Σ∗ such that p � q � r, we have: p, r ∈ Sol(P,D,Σ∗) ⇒ q ∈

Sol(P,D,Σ∗)

Example 17. For Sol(P1,D1,Σ
∗
1) from Example 13, we have S={cd} and G={d}.

The set S is called the maximally specific set and G is called the maximally
general set. For more details on how this mining problem relates to version
spaces, please refer to our previous works [6, 9]. In this paper, we focus on the
algorithms and optimizations.

4 Version Space Trees

To facilitate mining of string patterns, we have devised a data structure, which
we called the version space tree (VST). We have already described the VST in
other publications [6, 9]. So, we will give a brief overview of it here.

The VST data structure is inspired by the suffix tree, which is well studied [4,
5]. Instead of using a suffix tree, the VST is based on a less compact form, called
suffix trie.

114 S. Dan Lee and L. De Raedt

A trie is a tree with each edge labelled with a symbol from the alphabet Σ
concerned. Moreover, the labels on every edge emerging from a node must be
unique. Each node n in a trie thus uniquely represents the string s(n) containing
the characters on the path from the root r to the node n. The root node itself
represents the empty string ε.

A suffix trie is a trie with the following properties:

– For each node n in the trie, and for each suffix t of s(n), there is also a node
n′ in the trie representing t, i.e. t = s(n′).

– Each node n has as a suffix link suffix(n) = n′ where s(n′) is the suffix
obtained from s(n) obtained by dropping the first symbol. Note that |s(n′)| =
|s(n)| − 1. The root node is special because it represents ε, which has no
suffixes. We define suffix (root) = ⊥, where ⊥ is a virtual node, acting as a
null pointer.

Example 18. The VST for Sol(P1,D1,Σ
∗
1) from Example 13 is depicted in Fig. 1.

The numbers in each node n shows freq(s(n),D1). The label of each node is
shown to the left of the node. The dashed arrows show the suffix links. The
suffix links of the first level of nodes have been omitted for clarity. They all
point to the root node. Note that this diagram is for illustrative purpose. In
practice, we would prune away all branches containing only ! nodes to save
memory.

What makes VST unique is that we make two major deviations from the
main stream approach in the suffix tree culture. The first one is that instead
of building a suffix trie on all the suffixes of a single string, we are indexing all
the suffixes of a set of strings in a database D. This means multiple strings are
stored in the tree. As intermediate computation results, we even keep a count of
occurrences of each such substring. In addition to a count, we also store a label on
each node of the VST. The label ⊕ indicates that the represented string pattern
is in our solution Sol(P,D,Σ∗). Otherwise, it is !. Our algorithms in Sect. 5
exploit this label to store intermediate mining results. By contrast, theoretical
works in the literature normally handle multiple strings by reducing the problem
to a single string formed from concatenating the original strings, using a new
delimiter symbol. While this is elegant in theory, it is impractical.

A second difference is that most studies on suffix trees usually consider a more
compact form of suffix trie in which a chain of nodes with only one out-going
edges are coalesced into one edge label with the string containing the symbols
involved. We are not using this representation, as our algorithms need to keep
flags and counts with each substring represented in the tree.

One interesting property of a VST tree is that one can compute the sets S
and G (see Sect. 3.1) easily by a tree traversal. The S set consists of the strings
s(n) represented by the ⊕ nodes n who have no ⊕ descendants and no other ⊕
nodes n′ with suffix (n′) = n. The G set consists of the strings represented by
the ⊕ nodes n whose parent is ! and suffix (n) is labelled !.

Example 19. It can be easily checked from Fig. 1 with the above method that
for Sol(P1,D1,Σ

∗
1) from Example 13, S = {cd} and G = {d}. This is consistent

with Example 17.

An Efficient Algorithm for Mining String Databases Under Constraints 115

5

2
a

2
b

3
c

4
d

2
b

1
c

1
d

2
d

1
c

1
d

Fig. 1. A Version Space Tree

4.1 Beyond Version Spaces

The algorithms to be presented in Sect. 5 are designed to build VSTs that
represent sets of strings that form a version space under �. This restriction to
version spaces is only needed for the algorithms to build the VSTs efficiently.
Once the trees are built, we can perform other operations on them, treating the
VSTs as representations of sets only.

Indeed, once the VSTs are built, we can use tree merging algorithms to
compute the unions, intersections and set differences of them. No access to the
database D is needed for these operations. Therefore, they can be performed
completely in memory. We will see in section 6.4 that these operations generally
takes little time when compared to the VST building, because the latter involves
database scans.

With the possibility of performing general set operations on the resulting
VSTs, we can actually handle more complicated predicates than the form P =
A ∧ M. The problem is how to break down a general predicate P into sub-
predicates of the form Pi = Ai ∧Mi, so that Sol(P,D,Σ∗) can be computed
from the intermediate results Sol(Pi,D,Σ∗) using set operations (e.g. union,
intersection, set difference). We have made an elaborated study on this problem
in previous publications [6, 9]. So, we are not repeating it here. In this paper,
we give the details of the VST algorithm, as well as a new, faster algorithm
FAVST.

5 The Algorithms

In this section, we present two algorithms to build a version space tree, given
as input an alphabet Σ, a database D, and a predicate P of the form A ∧M.
Algorithm VST is a level-wise algorithm based on the well-known Apriori [18]
algorithm. It was first introduced in [6]. The other algorithm, FAVST is new and
is based on techniques in the suffix-tree literature [4], which is much faster when
the database size is large and the database access time is not negligible.

116 S. Dan Lee and L. De Raedt

We require that A be a non-trivial anti-monotonic predicate1, as the version
space and hence the corresponding tree with a trivial A will be infinite: There
would be a finite integer k such that all strings on Σ with length greater than k
will satisfy M. There is no such restriction on M, though.

In the algorithms, the alphabet Σ being used is restricted to the subset of “in-
teresting symbols”, i.e. those symbols that we want to appear in the discovered
patterns. Uninteresting or irrelevant symbols are dropped. The algorithms effec-
tively ignores symbols in the database D which do not belong to this restricted
Σ. This deviates a bit from the previous theoretical section. However, in prac-
tice, this can significantly prune down the search space, esp. when the original
alphabet is very large. This is because, like suffix tries, the size of a VST depends
on the alphabet size, which affects the search space of our algorithms. Using a
smaller alphabet improves the performance of both algorithms to be introduced.

5.1 Algorithm VST

The VST (Version Space Tree) algorithm is based on Agrawal’s Apriori [18]
algorithm. It consists of two phases:
1. Top-down growing of the version space tree using the anti-monotonic predi-

cate A.
2. Bottom-up marking of the version space tree using the monotonic predi-

cate M.
Both phases are designed to minimise the number of database scans. As such,

they both exhibit the cyclic pattern: candidate generation, candidate testing
(database scan) and pruning. The cycle terminates when no more new candidates
patterns are generated.

Since only the anti-monotonic predicate is handled in phase 1, we can reuse the
idea of Apriori. This is presented as the Descend algorithm (Algorithm 1). This
algorithm searches the strings satisfyingA in a top-down, breath-first manner. At
each depth level k (corresponding to the k-th iteration in Apriori), the algorithm
first expands the nodes from the previous level. The nodes resulting from expan-
sion is the set Ck. These candidate nodes are then tested against predicateA. The
testing involves one database scan. The candidate patterns that satisfy the pred-
icate are put into Lk. Those that do not are pruned away from the tree. This is
repeated for k = 1, 2, . . . until Ck is empty. All generated nodes are labelled with
⊕ and the suffix links are set up during the process as illustrated in Algorithm 1.

Note that the sets Ck and Lk are the same as the candidate sets and “large”
(i.e. frequent) sets in the Apriori algorithm. Moreover, the generation of Ck

from Lk−1 also mimics the Apriori-join operation in the Apriori algorithm.2

1 A trivial anti-monotonic predicate is one that always evaluates to true.
2 There are some differences here since we are dealing with strings instead of sets.

E.g., while Apriori-join generates generate itemset {a, b, c} from {a, b} and {a, c},
the Descend algorithm generates abc from ab and bc, because these are the only
immediately shorter substrings of abc.

An Efficient Algorithm for Mining String Databases Under Constraints 117

Algorithm 1 Descend
Input: D = a database

Σ = the alphabet of interesting symbols
A = an anti-monotonic predicate

Output: T = a version space tree with nodes for all strings on Σ satisfying A, and
all nodes labelled with ⊕.

Body:
Create version space tree T with root node r.
suffix(r) ← ⊥; label(r) ← ⊕
// 1st iteration
for all l ∈ Σ do // Candidate Generation

5: Add child node c to r with edge label l.
suffix (c) ← r; label(c) ← ⊕; Add c to C1, which is initially empty.

end for
L1 = {c ∈ C1 | A(c, D)}. // Database Scan
Remove from T all nodes n ∈ C1 \ L1. // Pruning

10:
k ← 2
loop // k-th iteration

for all node n ∈ Lk−1 do // Candidate Generation
for all child node c′ of n′ = suffix(n) do

15: Add child node c to n with the same edge label as that from n′ to c′.
suffix (c) ← c′; label(c) ← ⊕; Add c to Ck, which is initially empty.

end for
end for
if Ck is empty then

20: return T
end if
Lk = {c ∈ Ck | A(c, D)}. // Database Scan
Remove from T all nodes n ∈ Ck \ Lk. // Pruning
k ← k + 1

25: end loop

Descend makes use of the suffix link and parent-child relationship of a suffix
trie to perform the join efficiently (line 15). The major difference between De-
scend and Apriori is that the former also organizes the discovered strings into
a suffix trie, facilitating the join operation and the second phase of the VST
algorithm.

The second phase is implemented with algorithm Ascend. This phase han-
dles the monotonic predicateM. Here we assume that we have the set F0 of leave
nodes in the tree T generated by Descend. F0 can be easily obtained by a tree
traversal. Actually, it can also be computed during algorithm Descend. While
Descend works top-down, Ascend starts from the leaves and works upwards.
It first checks the leave nodes againstM. If any of these nodes n does not satisfy
M, its label is changed to !. In addition, all its ancestors are also labelled as
!, due to the monotonicity. So, we can propagate this ! mark upwards until
we have marked the root with !. Actually, we can stop as soon as we reach an
ancestor already marked with !, as another such leave node n′ may share some

118 S. Dan Lee and L. De Raedt

ancestors with n. So, all the ancestors from that point upwards have already
been marked with !. This is repeated for all n not satisfying M. For nodes p in
F0 that satisfy M, they should remain labelled ⊕. We enter the parent of p into
the set F1 (with duplication removed), which are to be considered in the next
iteration. This is to be repeated until we have an empty Fk.

Algorithm 2 Ascend
Input: T = the version space tree from Descend

D = the database being mined
M = the monotonic predicate
F1 = the set of leaf nodes in T

Output: T = the tree from input, with all nodes for strings not satisfying the predicate
M labelled with �.

Body:
k ← 1
while Fk is non-empty do // sweep upwards, starting from leaves

Pk = {f ∈ Fk | M(f, D)} // Database Scan
for all q ∈ Fk \ Pk do // Pruning

label(q) ← �
while q is not root ∧label(parent(q)) 	= � do // mark upwards

q ← parent(q)
label(q) ← �

end while
end for
Fk+1 = {parent(p) | p ∈ Pk ∧ p is not root} // Candidate Generation
k ← k + 1

end while

So, after these two phases, namely Descend and then Ascend, both A and
M have been handled. With a simply tree traversal, we can prune away branches
which now contains only ! children. We have a resulting tree T that is a pruned
suffix trie representing all the strings satisfying P = A ∧M.

Theorem 20. The VST algorithm performs at most 2m database scans, where
m is the longest string satisfying A.

Proof. The proof is quite straight-forward. Firstly, Descend is just the Apriori
algorithm with modifications to handle the suffix trie structure. Therefore, it
does the same number of database scans as Apriori, which is m. For Ascend,
we note that it starts with F1 containing all the leaves of the resulting T from
Descend. So, the deepest one has depth m. The (k−1)-th iteration of Ascend
generates a new Fk containing only parents of the previous Fk−1 (less the pruned
ones). As a result, nodes in Fk has at most depth m− k + 1. Since the depth of
a non-root node3 must be positive, we have m − k + 1 ≥ 1, i.e. k ≤ m. Thus,
Ascend makes at most m iterations and hence at most m database scans. #�
3 The root node represents the empty string, which needs not be checked against any

database.

An Efficient Algorithm for Mining String Databases Under Constraints 119

Algorithm 3 FAVST
Input: D = D1, . . . , Dn the database (divided into subsets)

Σ = the pattern alphabet
A =

∧n

i=1 minimum frequency(s, Di, θmini) the anti-monotonic predicate
M =

∧n

i=1 maximum frequency(s, Di, θmaxi) the monotonic predicate lenmax =
maximum length of substring pattern

Output: T = version space tree representing strings satisfying P = A ∧ M.
Body:

T ← InitTree(D1, Σ, θmin1 , θmax1 , lenmax)
Prune away branches in T with only � nodes.
for all i = 2, . . . , n do

CountAndUnmark(T, Di, Σ, θmini , θmaxi)
Prune away branches in T with only � nodes.

end for

5.2 Algorithm FAVST

The drawback of the previous algorithm is that it still has to scan the database
2m times, where m is the length of the longest string satisfying A. Actually,
strings exhibit some properties not exhibited by itemsets. Therefore, there is still
room for improvements. Our next algorithm, FAVST4 makes use of techniques
from the suffix-tree literature to improve performance. It is well-known in that
literature that the suffix-tree of a string can be built in linear time. Some of
these ideas are employed in the FAVST algorithm to make it possible to build
the version space tree with just a single database scan. We show here only how
frequency-based predicates are handled. Database-independent predicates can
be handled efficiently without database scanning. For other types of database-
dependent predicates, predicate-specific adaptations would be needed.

The FAVST algorithm is shown in Algorithm 3. It first calls InitTree to pro-
cess the first minimum frequency predicate and scan the first database subset (see
Sect. 2.2) to build an initial VST. Then, it invokes CountAndUnmark to process
the remaining database subsets and the corresponding minimum frequency pred-
icates. Note that CountAndUnmark will not grow the VST. It will only count the
frequency of the patterns in the corresponding database subset and mark those
not satisfying the thresholds θmini

and θmaxi with !. Branches with only !
are pruned away immediately after the the scanning of each database subset to
reduce the number of patterns that need to be checked against the subsequent
subsets.

The parameter lenmax specifies an upper bound on the length of the substring
patterns to be discovered. When set appropriately, this parameter makes FAVST
to be very efficient both in terms of computation time and memory usage (see
Sect. 6). FAVST is presented here as if we must specify a minimum and maximum
frequency threshold for every database subset. This is indeed not the case. If we
are not interested in specify a minimum frequency for subset i, we can simply

4 FAVST stands for “Finite Automata-based VST construction”.

120 S. Dan Lee and L. De Raedt

set θmini
= 0. Similarly, a maximum frequency can be set to θmini

= ∞ to
“disable” it. The algorithm in Algorithm 3 is presented in a way to simplify the
pseudo-code.

We will later see that each of the subalgorithms InitTree and CountAndUnmark
scans the specified database subset only once. So, the whole FAVST algorithm
scans each database subset only once. If the database subsets are disjoint, then
we can in implementation scan only the subset of data being processed. In that
case, FAVST completes in only one scan of the whole database. So, FAVST is a
single-scan algorithm.

Algorithm InitTree is shown in Algorithm 4. It scans each string in the
database subset symbol for symbol, going down the tree as it proceeds. If a
node does not have a suitable child for it to go downward, one such child is
created with CreateChild, so that we can go down the tree. Note that this “go-
ing down” increases the length of the string pattern represented by the current
node (n) by one. To handle the upper bound on the pattern length (lenmax),
the algorithm checks the depth of the current node before actually going down.
If the length limit is reached, the algorithm “backs up” by following the suffix
link. Essentially, if the current node represents string aw where a is a symbol
and w is a string so that |aw| = lenmax, then the next substring to be counted
would be “awς”, which exceeds the length limit. So, we continue with the suffix
“wς”, which is achieved by changing the current node n to suffix (n), because this
latter represents string w. Next, InitTree increments the count of the destination
of this going down, as well as all its suffixes. Then, the next symbol is processed,
continuing from this destination. When an uninteresting symbol (i.e. �∈ Σ) or
the end of a string is encountered, it starts the downward travel from the root
node again.

This is basically a suffix tree building algorithm, with four modifications. The
first is that we do frequency counting on the way as we go. The second is that
we put an upper bound on the length of the substring patterns, or the depth
of the trie. Thirdly, we jump back to the root when we encounter uninteresting
symbols, saving the need to process any strings containing such symbols. Last
but not least, we handle multiple strings, instead of a concatenation of these
strings. In the traditional and theoretical approach, multiple strings are handled
by building a suffix trie Tall on a single string s1$s2$. . . $sm (where m is the
number of strings in D) obtained by concatenating all strings in D, with a
special character “$” not occurring in the database as delimiter. While this
approach is a convenient tool for theoretical analysis of complexity, it is costly
in implementation as it increases the amount of memory required multifold. It
also multiples the depth of the trie, making a complete traversal expensive. Our
approach, instead, overlays all the strings sk onto a suffix trie with the same
root, maintaining multiplicity with the frequency count(n). Note that our trie T
can be obtained by taking Tall, cutting it at all the “$” nodes to obtain a forest
of smaller tries, and then merging all these smaller tries at the root to produce a
single trie. Uninteresting symbols are handled similarly. Therefore, we have the
following theorem.

An Efficient Algorithm for Mining String Databases Under Constraints 121

Algorithm 4 InitTree
Input: Di = a database subset

Σ = the pattern alphabet
θmin = minimum frequency threshold
θmax = maximum frequency threshold
lenmax = maximum length of substring pattern

Output: T = version space tree representing strings in Di satisfying P = A ∧ M.
Body:

Create version space tree T with root nod r.
suffix(r) = ⊥; label(r) = ⊕
count(n) ← 0; last-id(n) ← undefined
for all string s ∈ DBi with unique id id do

n ← r
for all symbol ς ∈ s do

if ς ∈ Σ then // an interesting symbol
if depth of n ≥ lenmax then

n ← suffix(n)
end if
if node n has no child c on outgoing edge labeled ς then

c ← CreateChild(n, ς)
add child c to n with edge label ς

end if
while x 	= ⊥ ∧ last-id(c) 	= id do // not counted yet

count(c) ← count(c) + 1
last-id(c) = id
x ← suffix(c) // count also all suffixes

end while
n ← c // process next symbol from here (i.e. longer string)

else // an uninteresting symbol
n ← r // break string; continue from root

end if
end for

end for
for all node n in T do // traverse the trie T

if count(n) < θmin ∨ count(n) > θmax then
label(n) ← �

end if
count(n) ← 0 // reset for next invocation
last-id(n) ← undefined // reset for next invocation

end for

Theorem 21. The suffix trie T obtained as described above is a sub-trie of the
suffix trie Tall. Moreover, it takes the same time complexity to build as Tall.

After scanning the database, InitTree performs a traversal of the trie and
checks if the counts satisfy the specified thresholds. If not, it labels that node
with “!”. Meanwhile, the algorithm also resets count(n) and last-id(n) for every
node to prepare for the next invocation.

122 S. Dan Lee and L. De Raedt

Algorithm 5 CreateChild
Input: p = the parent node

ς = the edge label to use
Output: c = the newly created node
Body:

Create new node c.
count(c) ← 0
last-id(c) = undefined
label(c) = ⊕
sn ← suffix (p)
if sn = ⊥ then // p is root

suffix (c) ← p
else

if sn has a child sc on outgoing edge labelled ς then
suffix (c) ← sc

else // create recursively
sc ← InitTree(sn, ς)
Add sc to sn with edge label ς
suffix (c) ← sc

end if
end if

The subroutine CreateChild (Algorithm 5) is relatively straight-forward. It
creates and initializes a new node. The most tricky part is to establish the suffix
link, recursively creating the node for the suffix if it is not already there. The
suffix node can be located by following the parent’s suffix. This is because if
the parent node p represents the string aw (where a is a symbol and w is a
string) and the new child node represents string awς, then the suffix of the new
child must represent wς, which is represented by a node whose parent represents
w—the suffix of p.

Algorithm 6 show the CountAndUnmark algorithm, which is similar to InitTree
except that it does not create new nodes. For any node n already present in T ,
we need not recreate it or re-calculate the suffix link. We only need to increase
the support count count(n) for that node. If the node n is not in T as we do
the downward walk, we know that s that it would represent is not present in T ,
and hence it is not a pattern we are looking for (because it doesn’t satisfy the
predicate a0 used to build the initial trie). So, there is no need to create that
node. Neither do we need to care about the length limit on the substring patterns,
because InitTree has avoided creating the nodes for substrings exceeding the
length limit. However, we should continue counting by considering the immediate
suffix s′ of s. This is done by following the suffix link of p, i.e. p′ = suffix (p),
which represents the string t′ = suffix (t). The node n′ representing s′ would be
a child of p′. If it is there, then we have located the node for s′ and we continue.
If not, then we repeat the above method of following suffix links until we have
t′ = ⊥. The support counts are thus counted in this manner. Again, as we visit
a node n, we increment the counter on that node to count the occurrence of the
corresponding substring pattern.

An Efficient Algorithm for Mining String Databases Under Constraints 123

Algorithm 6 CountAndUnmark
Input: T = a version space tree

Di = a database subset
Σ = the alphabet of interesting symbols
θmin = the lower support threshold
θmax = the upper threshold threshold

Output: T = the input T with nodes that have support counts in database subset Di

not satisfying the threshold labeled with “�”
Require: count(n) = 0 ∧ label(n) = undefined ∀ node n ∈ T
Body:

for all string s ∈ Di with unique id id do
n ← r, where r is the root node of T
for all symbol ς ∈ s do

if ς ∈ Σ then // an interesting symbol
while n 	= ⊥ ∧ node n has no child c on outgoing edge labeled ς do //
substring is not in T

n ← suffix(n) // try a suffix (a shorter string)
end while
if n 	= ⊥ then // found a suffix in T

x ← c
while x 	= ⊥ ∧ last-id(c) 	= id do // not counted yet

count(c) ← count(c) + 1
last-id(c) = id
x ← suffix(c) // count also all suffixes

end while
n ← c // process next symbol from here (i.e. longer string)

end if
else // an uninteresting symbol

n ← r // break string; continue from root
end if

end for
end for
for all node n in T do // traverse the trie T

if count(n) < θmin ∨ count(n) > θmax then
label(n) ← �

end if
count(n) ← 0 // reset for next invocation
last-id(n) ← undefined // reset for next invocation

end for

In order to avoid double-counting a node for the same string5 in both InitTree
and CountAndUnmark, we also record the string id last-id(n) ← k after incre-
menting the count. The support count is incremented only if last-id(n) �= k. The
nodes are labeled with “⊕” when they are created.

5 This can happen e.g. for st = ababc and a node n representing string ab. This is
because ab occurs twice in st. However, the frequency is defined in terms of number
of strings in DBr containing a string, irrelevant of how many times it occurs in the
same string.

124 S. Dan Lee and L. De Raedt

The major efficiency improvement of FAVST comes from the single database
scan. Firstly, note that the algorithm does not work level-wise in the style of
Apriori. Rather, it examine the predicates one by one and invokes InitTree and
CountAndUnmark to scan the concerned database subsets.

On the space efficiency, since the suffix trie is O(|D|2) in size (where |D|
is the total number of symbols in D), FAVST is less space-efficient than VST.
Nevertheless, in practice, we can specify a relatively small upper bound d on the
length of the longest substring pattern we are going to find. This can effectively
limit the depth of the VST to d, reducing the amount of memory that FAVST
would need. Of course, a minor modification to FAVST, which is not shown here,
is needed.

6 Experiments

The algorithms VST and FAVST have been implemented in C. The experiments
are performed on PC computer with a Pentium-4 2.8GHz processor, 2GB main
memory, and running Linux operating system (kernel 2.4.19, glibc 2.2.5).

6.1 Unix Command History Database

The database DB used in the experiments are command history collected from
168 Unix users over a period of time. [19] The users are divided into four groups:
computer scientists, experienced programmers, novice programmers and non-
programmers. The corresponding data subsets are denoted “sci”, “exp”, “nov”
and “non”, respectively. Each group has a number of users. When each users
accesses the Unix system, he first logs in, then type in a sequence of commands,
and finally logs out. Each command is taken as a symbol in the database, The
sequence of commands from log in to log out constitutes a login session, which
is mapped to a string in our experiment. Each user contributes to many login
sessions in the database. Table 1 gives some summary data on the database. To
study the effectiveness of the lenmax parameter to FAVST, we repeated FAVST
twice for each experiment: once with lenmax = ∞, essentially disabling the length
limit; and once with lenmax = 10. These are denoted “FAVST” and “FAVSTml”,
respectively, in all the tables and the figures.

Table 1. Summary statistics of the data

Subset no. of no. of θmin frequent time (milliseconds)
(Di) users strings substrings VST FAVST FAVSTml

nov 55 5164 24 294� 770 1040 330
exp 36 3859 80 292 700 950 530
non 25 1906 80 293 180 280 110
sci 52 7751 48 295 1170 2310 1010

�Of these 294 patterns, 36 have length > 10. They are thus dropped in FAVSTml.

An Efficient Algorithm for Mining String Databases Under Constraints 125

6.2 Performance—Minimum Frequency Only

The first set of experiments are done with only one minimum frequency predicate.
The thresholds used are shown in Table 1. These thresholds are selected so that
they produce around 300 frequent string patterns in each database subset. The
time taken (wall-clock time) by the two algorithms are noted and given in the
same table.

It is promising that FAVSTml is the fastest in all cases. With an upper bound
on the length of the substring patterns, FAVST works much more efficiently,
because of the reduction of the size of the trie structure. The drawback is that
36 patterns are pruned away by this length limit.

On the other hand, it seems disappointing that FAVST takes longer time to
finish than VST, despite our claim of a single database scan. Our explanation
is that the data files are stored in local harddisk, and hence are extremely fast
to access. Thus, the single-scan advantage of FAVST is suppressed. Moreover,
the disk caching effect also diminishes the advantage of a single database scan.
However, this is only valid for small databases which can be accessed quickly (e.g.
local drive). Much larger databases that do not fit into main memory or that are

FAVSTml
VST
FAVST

Novice programmers (nov)

Artificial Delay (ms/100 transactions)

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)

100908070605040302010

120

100

80

60

40

20

0

FAVSTml
VST
FAVST

Expert programmers (exp)

Artificial Delay (ms/100 transactions)

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)

100908070605040302010

40
35
30
25
20
15
10
5
0

FAVSTml
VST
FAVST

Non-programmers (non)

Artificial Delay (ms/100 transactions)

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)

100908070605040302010

18
16
14
12
10
8
6
4
2
0

FAVSTml
VST
FAVST

Computer Scientists (sci)

Artificial Delay (ms/100 transactions)

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)

100908070605040302010

70
60
50
40
30
20
10
0

Fig. 2. Performance comparison with database access delays

126 S. Dan Lee and L. De Raedt

Table 2. Memory usage of the two algorithms

Data sub- Max. mem. usage (bytes) Ratio
set(Di) VST FAVST FAVSTml FAVST/VST FAVSTml/VST

nov 57158 17456767 3573695 305 63.5
exp 88870 14439604 5367732 162 60.4
non 59918 6797462 2081558 113 34.7
sci 94454 23107503 8997455 245 95.3

stored on much slower storage devices (e.g. on CDROM, on a file server accessed
via a LAN, or even over a web server) can benefit from the single database
scan. To simulate this idea, we modified the programs to introduce a delay in
the database reading routine. The delay is parameter-controlled. It inserts m
milliseconds of delay for every 100 transactions (i.e. strings) read. Repeating
the above experiment with different values of m gives the results in Figure 2.
We plot the result of each data set separately, comparing the two algorithms in
each case.

It is clear from the figure that FAVST out-performs VST once the database
access delay becomes non-trivial. The former is consistently 3 times faster than
the latter. For the “nov” data set, the speed up ratio even reaches 6. Evidently,
the single database scan algorithm FAVST scales much better with large database
with slow access than the simpler algorithm VST. The effect of the limit on pat-
tern length does not appear significant here. The curves for FAVST and FAVSTml

almost overlap for all four data sets. This is because the dominant factor in ex-
ecution time is the number of database scans, which is always 1, whether or not
we specify a length limit on the patterns.

6.3 Memory Footprints

The speed up is a trade off with memory usage. Table 2 shows the maximum
amount of memory consumed by the two algorithms for the data structures. VST
has a memory footprint in the order of tens of kilobytes, whereas that of FAVST
is in megabytes. With today’s computing equipments, the memory consumption
of FAVST is absolutely affordable. Imposing a limit on the length of patterns
makes FAVSTml build a much smaller trie than FAVST, significantly reducing
the memory consumption by a factor of 2–5.

It should be noted that the memory consumption of the algorithms has no
direct relation to the database sizes. From Table 1, we can see that the data
set “nov” is larger than “exp” and “non”. However, it turns out to cause the
algorithms to consume less memory than the other two data sets. Our expla-
nation is that the “nov” data set has more repeated string patterns. Since our
algorithm uses the same trie node for the same pattern, the fewer the number of
distinct string patterns, the fewer nodes are created, and hence the less memory
consumed. In other words, the memory consumption is related to the number of
distinct string patterns, but not the database size. Thus, our algorithms exhibits
very nice properties for data mining applications. They scale well with database

An Efficient Algorithm for Mining String Databases Under Constraints 127

Table 3. An experiment on compound predicates

Trie P = A ∧ M
T1 minimum frequency(non; 24) ∧ maximum frequency(sci; 60)
T2 minimum frequency(nov; 80) ∧ maximum frequency(exp; 36)
U T1 ∪ T2

Table 4. Results on finding the union of two version spaces

Trie Time (seconds) number of nodes
VST FAVST FAVSTml labeled ⊕ labeled � total

T1 0.56 0.39 0.19 166 40 206
T2 1.23 1.19 0.37 237� 18 255
U negligible 401� 47 448

�Of these ⊕ nodes, 36 are at depth > 10, representing patterns of length > 10. These
are pruned away in the FAVSTml case.

size, and use an amount of memory depending on the amount of interesting
patterns that will be discovered.

6.4 Performance—Compound Predicates

The above experiments only makes use of the minimum frequency predicate. No
monotonic predicates are specified. Thus, the full features of our algorithms has
not been utilized. The following experiment uses the algorithms VST and FAVST
to compute two version space trees T1 and T2, each representing a set of strings
satisfying a predicate of the form P = A∧M, where A is minimum frequency and
M is maximum frequency. The details are tabulated in Table 3. The database
used is the same as described above. The thresholds for the minimum frequency
predicate are copied from Table 1, where as those for the maximum frequency
are from Table 1 less 25%. After computing these trees, the union of them,
U is computed by a näıve tree-merging operation. Note that U is no longer a
version space tree, as it represents a subsets of Σ∗ which is not a version space
anymore.

The results of the experiments are shown in Table 4. Each row shows the
time that either algorithm used to build that tree. The time taken to compute
U in either case is negligible, as it is done completely in memory. It takes so
little time (less than 0.01 second) that we cannot reliably measure because of
the granularity of the time-measurement program we are using.

It is encouraging that in this general case, FAVST runs faster than VST, even
though we did not add the artificial database access delay into the programs.
FAVSTml takes even less time to compute the result, although 36 patterns are
not discovered due to the length limit.

The longest pattern found (represented by the deepest node in U having
a ⊕ label) was “pix umacs pix umacs pix umacs pix umacs pix umacs pix
umacs pix umacs pix umacs pix umacs pix”, which has a length of 19. The

128 S. Dan Lee and L. De Raedt

deepest ! node in U represented the string “cd ls cd ls”, of length 4, which
has an interesting (labelled ⊕) child representing the string “cd ls cd ls e”. If
we did not have any monotonic predicates (i.e. maximum frequency in this case),
“cd ls cd ls” would have been considered interesting because it is frequent
enough. However, with the monotonic predicates, this string is now too frequent
and hence it is considered uninteresting and marked with ! in U . This illustrates
the increased power and expressiveness of using both anti-monotonic and mono-
tonic predicates together in data mining. The ability to compute U efficiently
by manipulating the results T1 and T2 shows the power of these algorithms in
combination with the results in [6, 9].

7 Conclusions

In this paper, we have addressed the problem of Mining Substring Patterns under
conjunctive constraints. This is a core component of a more general data mining
framework in a couple of related works [6, 9, 10].

The main contribution of this paper was the FAVST algorithm, which em-
ploys the VST data structure of [6, 9] and combines principles of constraint based
mining with those of suffix-trees. This algorithm has the very nice property of
requiring only one database scan, at the expense of very affordable memory over-
heads. Such overheads can be significantly reduced by imposing an upperbound
on the length of patterns. The data structure and algorithms have been empir-
ically proved to be practical and useful for finding substring patterns in a unix
user command database.

One direction for further research is concerned with data streams. It might
be possible to combine the present framework with that proposed by Han et al.

References

1. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19 (2003) 79–86

2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., U.S.A. (1993) 207–216

3. Agrawal, R., Srikant, R.: Mining sequential patterns. In Yu, P.S., Chen, A.S.P.,
eds.: Eleventh International Conference on Data Engineering, Taipei, Taiwan,
IEEE, IEEE Computer Society Press (1995) 3–14

4. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249–260
5. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14 IEEE Symposium on

Switching and Automata Theory. (1973) 1–11
6. De Raedt, L., Jaeger, M., Lee, S.D., Mannila, H.: A theory of inductive query

answering (extended abstract). In Kumar, V., Tsumoto, S., Zhong, N., Philip
S. Yu, X.W., eds.: Proc. The 2002 IEEE International Conference on Data Mining
(ICDM’02), Maebashi, Japan (2002) 123–130 ISBN 0-7695-1754-4.

An Efficient Algorithm for Mining String Databases Under Constraints 129

7. Kramer, S., De Raedt, L., Helma, C.: Molecular feature mining in HIV data. In:
KDD-2001: The Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Association for Computing Machinery (2001) ISBN:
158113391X.

8. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its applica-
tion to molecular fragment finding. In: IJCAI01: Seventeenth International Joint
Conference on Artificial Intelligence. (2001)

9. De Raedt, L., Jaeger, M., Lee, S.D., Mannila, H.: A theory of inductive query
answering. (2003) (submitted to a journal).

10. Lee, S.D., De Raedt, L.: An algebra for inductive query evaluation. [20] 147–154
11. Grahne, G., Lakshmanan, L.V.S., Wang, X.: Efficient mining of constrained cor-

related sets. In: Proceedings of the 16th International Conference on Data Engi-
neering, IEEE Computer Society (2000) 512–521

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In Chen, W., Naughton, J.F., Bernstein, P.A., eds.: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, Dallas, Texas, U.S.A.,
ACM Press (2000) 1–12

13. Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In:
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2000), Boston, MA, USA (2000) ISBN: 1-58113-
233-6.

14. Fischer, J., De Raedt, L.: Towards optimizing conjunctive inductive queries. In:
Proc. The Eighth Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD2004), Carlton Crest Hotel, Sydney, Australia (2004)

15. Boulicaut, J.F., Jeudy, B.: Using constraints during set mining: Should we prune
or not? In: Actes des Seizième Journées Bases de Données Avancées (BDA’00),
Blois, France (2000) 221–237

16. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAMiner: Optimized
level-wise frequent pattern mining with monotone constraints. [20] 11–18

17. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18 (1982) 203–226
18. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,

J.B., Jarke, M., Zaniolo, C., eds.: Proceedings of the 20th International Conference
on Very Large Databases, Santiago, Chile, Morgan Kaufmann (1994) 487–499

19. Greenberg, S.: Using unix: Collected traces of 168 users. Research Report
88/333/45, Department of Computer Science, University of Calgary, Alberta,
Canada. (1988)

20. Wu, X., Tuzhilin, A., Shavlik, J., eds.: Proceedings of The Third IEEE Interna-
tional Conference on Data Mining (ICDM’03). In Wu, X., Tuzhilin, A., Shavlik,
J., eds.: Proceedings of The Third IEEE International Conference on Data Mining
(ICDM’03), Melbourne, Florida, USA, Sponsored by the IEEE Computer Society
(2003)

An Automata Approach to Pattern Collections

Taneli Mielikäinen

HIIT Basic Research Unit,
Department of Computer Science,

University of Helsinki, Finland
Taneli.Mielikainen@cs.Helsinki.FI

Abstract. Condensed representations of pattern collections have been
recognized to be important building blocks of inductive databases, a
promising theoretical framework for data mining, and recently they have
been studied actively. However, there has not been much research on how
condensed representations should actually be represented.

In this paper we study how condensed representations of frequent
itemsets can be concretely represented: we propose the use of deter-
ministic finite automata to represent pattern collections and study the
properties of the automata representation. The automata representation
supports visualization of the patterns in the collection and clustering of
the patterns based on their structural properties and interestingness val-
ues. Furthermore, we show experimentally that finite automata provide
a space-efficient way to represent itemset collections.

1 Introduction

One of the most important approaches to mine data is pattern discovery which
aims to extract interesting patterns (possibly with some interestingness values
associated to each of them) from data. The most prominent example of a pattern
discovery task is the frequent itemset mining problem [1]:

Problem 1 (Frequent Itemset Mining). Given a multi-set d = {d1 . . . dn} (a trans-
action database) of subsets (transactions) of a set I of items and a minimum
frequency threshold σ ∈ [0, 1], find the collection of σ-frequent itemsets in d, i.e.,
the collection

F(σ, d) = {X ⊆ I : fr(X, d) ≥ σ}
where

fr(X, d) =
supp(X, d)

n
,

supp(X, d) = |cover(X, d)|
and

cover(X, d) = {i : X ⊆ di, 1 ≤ i ≤ n} .

There exist techniques to find all frequent itemsets reasonably efficiently [2].
A major advantage of frequent itemsets is that they can be computed from data

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 130–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Automata Approach to Pattern Collections 131

without much domain knowledge: any transaction database determines an em-
pirical joint probability distribution over the item combinations and the marginal
probabilities of the combinations with high probability can be considered as a
reasonable way to summarize the empirical joint probability distribution deter-
mined by the data. The generality of this summarization approach causes also
troubles: the frequent itemset collections that describe data quite well tend to
be quite large. Although the frequent itemsets might be found efficiently enough
even from very large transaction databases, it is not certain that an enormously
large collection of frequent itemsets is very concise summary of the data.

The problem of discovering too large frequent itemset collections to com-
prehend has been tried to solve by finding small sub-collections of the frequent
itemsets that are sufficient to determine which itemsets are frequent and what
are the frequencies of the frequent itemsets. Such sub-collections are often called
the condensed representations of frequent itemsets. (In general, the condensed
representations do not have to be sub-collections of patterns but just some data
structures from which it is possible to answer queries of certain kind accurately
and efficiently enough. In fact, the condensed representations were originally in-
troduced in this broader context [3].) The condensed representations of frequent
itemsets (and interesting patterns, in general) have been recognized to have an
important role in inductive databases which seems to be a promising theoretical
model for data mining [4, 5, 6]. Furthermore, many condensed representations of
itemset collections are readily applicable to several other collections of interest-
ing patterns.

The condensed representations of frequent itemsets have studied actively and
several condensed representations, such as maximal itemsets [7], closed item-
sets [8], free itemsets [9], disjunction-free itemsets [10], disjunction-free gener-
ators [11], k-free itemsets [12] non-derivable itemsets [13], condensed pattern
bases [14], pattern orderings [15] and pattern chains [16], have been proposed.
However, not much has been done on how the condensed representations should
actually be represented although it is an important question: the representation
of the knowledge can drastically affect the efficiency of the inductive database
but it also affects the data analyst to comprehend or not to comprehend the
mining results.

In this paper we study how pattern collections can be represented explicitly.
(Two other alternatives to represent pattern collections would be the represent
the collection implicitly or represent it partly implicitly and partly explicitly.
These representations have been studied in [17] and in [18], respectively.) We sug-
gest using deterministic finite automata as condensed representations of pattern
collections. For brevity, we focus on itemset collections. The automata represen-
tations of itemset collections are space-efficient, allow efficient ad-hoc queries of
frequencies, support exploratory data analysis, can be used to cluster the pat-
terns, and have very natural visualizations. The approach can be adapted also
to other kinds of pattern collections such as subsequences and subgraphs.

The paper is organized as follows. Section 2 concerns pros and cons of de-
scribing a pattern collection by listing the patterns explicitly. In Section 3 we

132 T. Mielikäinen

define the automata terminology used in this paper, describe the currently used
automata approach for pattern collections (that is, representing pattern collec-
tions as tries) and study their properties. In Section 4 and Section 5 we propose
two more refined automata approaches to express the condensed representations
of frequent itemset collections. In Section 6 the visualization and clustering pos-
sibilities of the automata representations are discussed and in Section 7 the
conciseness of the proposed approaches is experimentally evaluated. The work
is concluded in Section 8.

2 Listing Patterns

A straightforward way to describe a pattern collection is to list the patterns
and their interestingness values. In the case of frequent itemsets (or any other
itemset collection), each itemset can be expressed as a bit vector of length |I|.

A fundamental assumption in frequent itemset mining is that the frequent
itemsets are quite small compared to the number of items. Partly this is a prac-
tical necessity as an itemset of cardinality k has 2k subsets but the property has
been observed in many real data sets (for sufficiently high minimum frequency
threshold values), too. Thus, it is often more appropriate to represent each item-
set as a list of items rather than as a binary vector. An itemset collection can
then be represented as a list of these lists. In practice, the frequent itemsets are
usually represented to the user and stored this way.

Representing an itemset collection as a list of itemsets is quite comprehensible
representation. However, retrieving the frequency of a certain itemset X can take
time proportional to Ω(|S| |X|) as each itemset in a collection S might have to
be compared with X and the comparison can take time proportional to Ω(|X|).
Also, the representation needs Ω(|S| |I|) space. On the bright side, it can be
checked easily in space O(|X|) whether or not an itemset X is in S, and if
X ∈ S the frequency of X can be retrieved in space O(|X|), too. It is possible
to ask also many other kinds of itemset queries to the list in space O(|X|) and
time O(|S| |I|).

Note that throughout the paper we charge unit cost (instead of, e.g., log |I|
cost) for representing an item. Usually in practice the items fit into computer
words (e.g., 264) and thus this is a reasonable assumption. If more concise rep-
resentation for the items is desired and the number of items is greater than the
word size, then one could use, for example, Huffman codes [19] that emphasize
as a side product the typicalness of the items in the database.

3 Patterns in Tries

Another very popular representations of itemset collections are tries, also called
as prefix trees and itemset trees, see e.g. [20, 21, 22]. A trie is an |I|-ary tree
representing a prefix-free collection of strings over alphabet I such that each
string in the collection corresponds to a (unique) path from the root to some

An Automata Approach to Pattern Collections 133

leaf. To make the collection of strings prefix-free an end symbol $ (that is not in
I) is concatenated to the end of each string.

Thus, an itemset collection S ⊆ 2I can be represented in a trie by fixing
some ordering A1, . . . , A|I| of the items in I as follows: each itemset X ={
Ai1 , . . . , Ai|X|

} ∈ S (1 ≤ i1 < . . . < i|X| ≤ |I|) in the collection is represented
as a string Ai1 . . . Ai|X|$. The size of the trie is the number of its nodes including
the leaves. The prefix tries can be seen also as a special case of deterministic
finite automata:

Definition 1 (Deterministic Finite Automaton [23]). A deterministic fi-
nite automaton (DFA) is a 5-tuple A = (Q, Σ, δ, r, F) where

1. Q is a finite set of states,
2. Σ is a finite set of input symbols,
3. δ : Σ ×Q → Q is a transition function,
4. r ∈ Q is a start state, and
5. F ⊆ Q is a finite set of final states.

The automaton A accepts a string x ∈ Σ∗ if and only if δ(x, r) ∈ F where the
transition function is defined for strings recursively as follows:

δ(x, r) = δ(x1 . . . x|x|, r)
= δ(x2 . . . x|x|, δ(x1, r)) = . . .

= δ(x|x|, δ(x1 . . . x|x|−1, r)) = . . .

= δ(x|x|, δ(x|x|−1, . . . , δ(x1, r))).

Similarly to the deterministic finite automata, also the prefix tries offer ef-
ficient retrieval of frequencies. Namely, the frequency fr(X, d) of an itemset
X =

{
Ai1 , . . . , Ai|X|

}
can be retrieved in time O(|X|) by traversing from the

initial state r (i.e., the root r of the trie) to an end state q = δ(Ai1 . . . Ai|X|$, r)
(i.e., the leaf q) and reporting the frequency corresponding to q if it exists, or
decide that the itemset X is infrequent.

The size of the trie representation can be considerably smaller than than
representing the itemset collection S ⊆ 2I explicitly.

Proposition 1. Let S = 2I . Then the size of the explicit representation (i.e.,
the number of items) of S is

|I| 2|I|−1

and the size of the trie representing S is

2|I|+1.

Proof. The number of itemsets in S containing an item A ∈ I is

1
2
|S| = 2|I|−1.

134 T. Mielikäinen

Thus, the total number of items in all itemsets of S is∑
X∈S

|X| =
∑
A∈I

2|I|−1 = |I| 2|I|−1.

The trie representation of S consists of one root node, inner nodes and |S|
leaf nodes. The number of inner nodes is as follows. Let <I be the ordering of
the items in I and let A1, . . . , A|I| be the items in I in ascending order in <I .
The number of itemsets having A|I| as their last item is |S| /2. The number
of itemsets having A|I|−1 as their last item is |S| /4. In general, the number of
itemsets having A|I|−k as their last item is |S| /2k for all k < |I|. Thus, the total
number of inner nodes is

|I|∑
i=1

2|I|/2i =
|I|∑
i=1

2|I|−i =
|I|−1∑
i=0

2i = 2|I| − 1

Each inner node and the root node have exactly one leaf attached to them. Thus,
the total number of nodes in the trie representing S = 2I is

2
(
1 + 2|I| − 1

)
= 2|I|+1

as claimed. #�
Note that the itemset trie can be transformed into a binary tree where in

each node it is decided whether some particular item A is in the itemset or not.
The size of the binary tree is less than two times the size of the itemset trie since
each edge in the itemset trie induces at most two edges to the binary tree.

As the itemsets in the trie are represented by strings instead of itemsets, we
must be able to fix an ordering for the items. It is easy to fix some ordering for
the items. However, it is not clear what ordering would be most desirable. For
example, it is natural to ask how the size of the trie depends on the ordering.

3.1 Downward Closed Itemset Collections

Let us first consider downward closed itemset collections, i.e., itemset collections
S such that X ∈ S implies that also all subsets of X are in S. Many itemset
collections in data mining are downward closed. Maybe the most well-known
examples of this kind of itemset collections are the collections of frequent item-
sets. A downward closed itemset collection S can be described by its maximal
itemsets [24]:

Definition 2 (Maximal Itemsets). An itemset X ⊆ I is maximal in S ⊆ 2I

if no proper superset of X is in S.
The collection maximal σ-frequent itemsets in d is denoted by

M(σ, d) = {X ∈ F(σ, d) : Y ∈ F(σ, d) ⇒ Y �⊃ X} .

The collection of maximal itemsets in S is also the smallest sub-collection of
a downward closed itemset collection S that determines the whole collection S.

An Automata Approach to Pattern Collections 135

Example 1. The collection M(σ, d) of maximal σ-frequent itemsets determine
the collection F(σ, d) (but not usually the frequencies of the itemsets in F(σ, d))
in the following way:

F(σ, d) = {X ⊆ I : X ⊆ Y ∈M(σ, d)} .

Downward closed itemset collections are very desirable with respect to the
orderings of the items. Namely, all orderings are equally good for downward
closed itemset collections as shown by the following theorem:

Theorem 1. If the itemset collection S is downward closed then the ordering
of the items does not affect the size of the trie.

Proof. Let M denote the maximal itemsets in S and let X1, . . . , X|M| be an
arbitrary ordering of the itemsets inM. We proceed by induction in the number
k of maximal itemsets in S.

The claim holds when k = 1. Assume that the result holds the downward
closed collection determined by the maximal itemsets X1, . . . , Xk, k ≥ 1. We
will show that then it holds also for X1, . . . Xk+1. The maximal set Xk+1 is
charged for the nodes it creates to the trie of determined by the maximal itemsets
X1, . . . , Xk. Let us, w.l.o.g., insert the subsets of Xk+1 to the trie from smallest
to largest and charge the cost of creating a node from the itemset that caused
it creation. This way each set in a downward closed set collection has a cost at
most 1. Inserting the subsets of Xk+1 that are contained in some Xi, 1 ≤ i ≤ k,
cost nothing. Let the subset Y of Xk+1 have cost one. This means that Y is not
contained in any set Xi, 1 ≤ i ≤ k. Thus Y would have cost one anyway.

Thus the ordering of the items does not affect the size of the trie representing
a downward closed set collection over the items. #�

3.2 Arbitrary Itemset Collections

In the case of arbitrary itemset collections the ordering of the items can drasti-
cally affect the size of the trie.

Example 2. Let I = {1, . . . , n} and let S = {{1, . . . , n} , {2, . . . , n} , . . . , {n}}.
If the items are in ascending order, the number of edges in the tree would be
Θ(|I|2) whereas all itemsets fit into one branch and thus size of the tree would
be O(|I|) if the ordering is descending.

Usually items are ordered to increasing or decreasing order with respect to
their frequencies. Neither of these provide the optimal ordering in the size of the
trie. Thus, there is a need for better criteria.

There are two immediate approaches to look at the problem: from the root to
the leaves and from the leaves to the root. The trie can be partitioned into sub-
tries considering the prefixes of the itemsets. The sub-trie of the node corresponds
to the itemsets in the collections with the prefix equal to the edge labels from the
root to the that node. Similarly, the common suffixes of the itemsets determine
partitions of the itemset trie.

136 T. Mielikäinen

Finding an ordering that produces a small itemset trie has similarity to the
problems of ordering the variables in OBDDs and finding a small equivalent
decision tree, which both are known to be NP -hard [25, 26]. (Ordered Binary-
Decision Diagrams (OBDDs) represent Boolean functions as acyclic graphs,
see [27] for more details.) So, finding a desirable ordering for items is also a
good candidate of being NP -hard. This does not mean much in practice since
it is sufficient to find orderings that are good enough.

An efficient approach to avoid pathological item orderings is construct the
trie for several random permutations of the items and choosing the one with the
smallest trie. This can be done in time O(k |S| |I|) where k is the number of
random permutations tried, since the trie of S for a given permutation can be
constructed in time |S| |I|. Random permutations of the items are also in line
with the fact that data mining is exploratory, since different permutations can
reveal different properties of the pattern collections.

A standard approach to solve combinatorial optimization problems is to sys-
tematically evaluate potential solutions, and detect and prune regions of the
search space that cannot have the optimum solution. For example, most of the
pattern discovery techniques, including the famous Apriori algorithm [20], are
based on that approach. Evaluating a given ordering can be done relatively eas-
ily by just constructing the trie. The systematic evaluation of different orderings
can be done faster by modifying the current trie rather than constructing the trie
from scratch for each ordering. Furthermore, the search space can be pruned by
detecting unpromising prefixes of the orderings by computing the lower bounds
for the sizes of the tries for a given prefix.

The simplest lower bound is the size of the trie for the itemset collection
projected on the prefix, i.e., neglecting all items that are not in the ordering yet.
To improve this lower bound, we have to be able to bound the sizes of the sub-
tries induced by the unordered items. First, all itemsets containing only those
items that are already ordered, can be neglected. The rest of the itemsets are
partitioned into equivalence classes with respect to their ordered prefixes. Each
equivalence class corresponds to the itemsets in a sub-trie of still unordered
items. The sizes of the sub-tries can be bounded by the number of itemsets in
the sub-trie and the cardinality distributions of the itemsets in the sub-trie.

The ordered representations of itemsets would benefit on having different
orderings in different parts of the representation. A varying ordering, however,
can cause serious efficiency problems to ad-hoc queries to the pattern collection
and making it more difficult to understand the collection. Finding a good varying
ordering seems to be also computationally very difficult problem.

4 Automata Representations Based on Trie Refinements

The trie for an itemset collection has quite redundant structure if we are inter-
ested only to decide whether certain itemset is frequent, and if it is, what is its
frequency. For example, trie has a separate final state for each itemset in the
collection although the number of different frequencies in the itemset collection

An Automata Approach to Pattern Collections 137

is usually smaller. If we interpret the trie as an automaton we can reduce the size
of the representation without sacrificing the understandability. In fact, it can be
argued that the simplified automaton is even more understandable representa-
tion than the trie (although also the opposite can be argued). Let us remark that
that the automaton representing a finite number of strings is always an acyclic
graph.

The most obvious improvement is to replace the final states by one final state
for each different frequency. In addition to reducing the size of the representa-
tion, this optimization also represents the clustering of the itemsets based on
their frequencies, see Section 6. This improvement can be further developed by
merging the identical paths from the leaves of the trie, similarly to the standard
itemset construction.

Example 3. Let the collection S consists of itemsets
{
A1, Ai, A|I|

}
for all 1 <

i < |I|. Then the automaton representation of the itemset collection S consists
of one state for each item in I and one end state but the trie representation of
S contain |I| − 2 states for A|I| and |I| − 2 end states. Thus, the total number
of states in the trie is

1 + 3 (|I| − 2) = 3 |I| − 5

for all |I| ≥ 3.

In general, as any automaton representing an itemset collection is acyclic,
it can be minimized in linear time in the number of states [28, 29]. Automata
representations of itemset collections can be reduced even further due to the
special structure of the input strings: itemsets are represented by subsequences
of A1 . . . A|I| extended with the end symbol $.

The minimum automata representations can be considerably smaller than the
trie representations. Namely, the automata representations can be exponentially
smaller than the trie representations:

Example 4. Let I be the set of items and let the itemset collection be 2I . Then
the number of states in the automaton representation of 2I is |I| + 1 whereas
the trie representing the collection 2I is of size 2|I|+1 as shown in Proposition 1.

Similarly to the item ordering in the case of tries, we suspect the computa-
tional complexity of finding the best ordering for the automata representation
to be high too.

5 Commutative Automata

Although the automata constructions described in Section 4 enable efficient
queries and compact representations of the itemset collections, the ordering of
the items might sometimes conceal some relevant aspects of the itemset collec-
tion since the language defined by the itemset collection is actually commutative:
there is no evident reason (without any additional information about the itemset
collection and the items) why some of the strings 123, 132, 213, 231, 312 and
321 should be favored to be the true representation of the itemset {1, 2, 3}.

138 T. Mielikäinen

One way to avoid this problem of item orderings but still compressing the
itemset collection is to find a minimum chain partition for the collection [16].
Minimum chain partitions of pattern collections are appealing also because only a
partial ordering for the pattern collection is needed in order to find the partition.
Although being potentially smaller, the chain partitions share strengths and
weaknesses with lists of patterns.

Another downside of the representations described in Section 3 and Section 4
is that it is not easy to decide whether a given itemset Y is contained in some
itemset in the itemset collection S. In the worst case one has to transverse
essentially the whole trie or generate all strings accepted by the automaton to
assure that the itemset Y is not contained in any of the itemsets in the itemset
collection S.

As data mining is inherently iterative and exploratory process, a good con-
densed representation should reflect and support the exploration process. This
goal can be achieved by a commutative automaton, i.e., an automaton that ac-
cepts an itemset of the collection (and expresses the frequencies) regardless of
the order the items are revealed to the automaton.

Definition 3 (Commutative Automaton). The commutative automaton for
an itemset collection S is the following deterministic finite automaton:

1. The state space Q consists of all subsets of each itemset X in S and the
frequencies of the itemsets in S.

2. The set Σ of input symbols is the set I ∪ {$}.
3. There is a transition from a state X ∈ Q to a state Y ∈ Q by A if and only

if Y = X ∪{A} and a transition from a state X ∈ Q to a state fr(X, d) ∈ Q
by $ if and only if X ∈ S.

4. The initial state r corresponds to the empty set ∅.
5. The set F of final states are the frequencies of the itemsets in the itemset

collection S.

Usually there is also some additional information associated to each final
state. For example, in the case of the frequent itemsets the additional information
is typically the frequency of the itemset.

Note that in the commutative automaton representing the collection S there
is one state for each itemset in the downward closure of S, i.e., the collection

cl(S) = {X ⊆ I : X ⊆ Y ∈ S} .

Many popular itemset collections are downward closed but there are impor-
tant itemset collections that are not. Thus, this basic version of commutative
automaton can actually blow up the representation.

Still, the commutative automaton for a frequent itemset collection can be
minimized in linear time using the same algorithms as in the previous section.
The number of states can be reduced also by exploiting the structure of the
itemset collection and the frequencies of the itemsets. For example, the state
space Q consisting of the frequent itemsets can be replaced by the closed frequent
itemsets:

An Automata Approach to Pattern Collections 139

Definition 4 (Closed Itemsets). an itemset X ∈ S is closed with respect
to a transaction database d if its frequency is higher than the maximum of the
frequencies of its supersets, i.e., if

X ⊂ Y ⊆ I ⇒ fr(X, d) > fr(Y, d).

The collection closed σ-frequent itemsets in d is denoted by

C(σ, d) = {X ∈ F(σ, d) : Y ⊃ X ⇒ fr(X, d) > fr(Y, d)} .

The great virtue of closed itemsets is their natural interpretation as intersec-
tions of transactions [8, 11].

Definition 5 (Closures). A closure of X in a transaction database d, denoted
by cl(X, d), is the (unique) largest superset cl(X, d) = Y of X that fr(X, d) =
fr(Y, d). (Thus, cover(X, d) = cover(Y, d).) The closure of X is equal to the
intersection of the transactions containing X, i.e.,

cl(X, d) =
⋂

i∈cover(X,d)

di.

All maximal σ-frequent itemsets are closed σ-frequent itemsets too, but the
number of closed σ-frequent itemsets can be exponentially larger than the num-
ber maximal σ-frequent itemsets.

Example 5. Let the transaction database d consist of transactions I \ {A} for
all A ∈ I and &σ/(1− σ)' transactions I. Then all subsets of I are closed but
only I is maximal. The number of subsets of I is 2|I|.

On the other hand, the collection of closed σ-frequent itemsets is a sub-
collection of the collection of σ-frequent itemsets and the number closed σ-
frequent itemsets can be exponentially smaller than the number of all σ-frequent
itemsets.

Example 6. Let the transaction database d consist of an itemset I. Then the
only closed itemset is I but all subsets of I are σ-frequent for all σ ∈ [0, 1].

We can define the commutative automaton also for the closures of the item-
sets. The commutative automaton for the closures in the itemset collection S
differs from the commutative automaton represented above only by the state
space and the transition function:

– The state space consists of closures of the itemsets in S, the intersections of
the closures of the itemsets in S, and the frequencies of the itemsets in S.

– There is a transition from the state cl(X, d), X ∈ S to the state cl(Y, d), Y ∈
S by A if and only if

cl(Y, d) = cl(cl(X, d) ∪ {A} , d) = cl(X ∪ {A} , d).

– There is a transition from the state cl(X, d), X ∈ S, to the state fr(X), X ∈
S by $ if and only if X = cl(X, d).

140 T. Mielikäinen

The intersection of the closures of the itemsets in S are needed to ensure
the uniqueness of the closures in S, i.e., to ensure the automaton being deter-
ministic. In the case of σ-frequent itemsets, the intersections of the σ-frequent
closed itemsets are also σ-frequent closed itemsets. Thus, the state space of the
commutative automaton represented by the closures of σ-frequent itemsets con-
sists of the closed σ-frequent itemsets and their frequencies. The commutative
automaton of an itemset collection S based on closures accepts all subsets of
itemsets in S that have unique closures. In the case of σ-frequent itemsets, this
means that the automaton accepts all σ-frequent itemsets.

Queries to this automaton traverse in the closures of the itemsets in the
itemset collection. The automata minimization algorithm described in [28] can be
implemented to run in linear time also for this kind of automata since the cycles
in the automaton are only self-loops. A commutative automaton can efficiently
answer frequency queries for all frequent itemsets. Note that this is not the case
with itemset tries and automata of the previous section.

6 Clustering and Visualization of Automata

The automata representations of frequent itemset collections can be useful in vi-
sual data mining of frequent itemset collections as there are advanced techniques
to visualize automata. An example of visualization of itemset collection

2{A,B,C} = {∅, {A} , {B} , {C} , {A, B} , {A, C} , {B,C} , {A, B, C}}

with supports equal to 4− |X| for each itemset X ∈ 2{A,B,C} \ {∅} and support
equal to 3 for ∅ is shown in Figure 1.

A simplest approach is to cluster the patterns is to group them by their
end states. An automaton representation for each cluster can be found from
the automaton representations by reversing the edges of the underlying graph

{A, B}C

ABCAB

2

1

3

A

B

C

∅

Fig. 1. An automata visualization of the itemset collection 2{A,B,C}

An Automata Approach to Pattern Collections 141

{A, B}C

ABCAB

2

1

3

A

B

C

∅

Fig. 2. An automata visualization of the itemset collection 2{A,B,C} emphasizing the
itemset cluster with supports equal to two by color

{A, B}C

AB

2

A

B∅

Fig. 3. The sub-automaton of Figure 1 corresponding to the itemsets with supports
equal to two

and computing which nodes are reachable from the corresponding final state.
This can be done in time linear in the number of transitions. There are several
possibilities how the clusterings can be visualized by the automata. For example,
the nodes can be colored based on which clusters they belong. If a state belongs
to several clusters, its color can be a mixture of the colors of the clusters. For
an illustration of highlighting the clusters, see Figure 2.

Alternatively each cluster can be represented as its own sub-automaton (that
could be interactively highlighted from the visualization of the original automa-
ton). The sub-automaton of the automaton of Figure 1 is shown in Figure 3.
Note automata minimization can be applied also to sub-automaton. For exam-
ple, the automaton of Figure 3 can be reduced by one third, i.e., to four states.
However, the automaton might change considerably by the minimization process
and thus make exploratory data analysis more difficult.

If approximate frequencies would suffice, the number of final states could be
further reduced by discretizing the frequencies [30]. As the most extreme case of
the frequency discretization we get only the information whether the itemset is
frequent or not. Thus, by a hierarchical discretization of the frequencies we get a

142 T. Mielikäinen

B

$

$

$

C

BA

C

$

C

Fig. 4. The automaton of Figure 1 after discretizing (i.e., merging end states) and
minimizing

refining series of automata. The minimized automaton for the itemset collection
2{A,B,C} when all frequencies are discretized to be the same is shown in Figure 4.

In addition to clustering by frequencies, the patterns could be clustered also
based on the structural properties of the patterns and the pattern collection.
For example, the pattern collection could be partitioned in such way that the
patterns that share many states with each other in the automaton would be
in the same group. Also this naturally gives rise of a hierarchical clustering of
patterns as refining partition of automata.

7 Experiments

To evaluate the applicability of the automata approach to represent itemset
collections we experimented with two data sets from UCI KDD Repository:1

Internet Usage data set consisting of 10104 transactions and 10674 items, and
IPUMS Census data set consisting of 88443 transactions and 39954 items.

In particular, we wanted to know how much the automata representation
described in Section 3 could reduce the space consumption compared to the
straightforward listing of the itemsets and their frequencies. We were interested
to see also how much the ordering of the items affects the sizes of the automata.
We computed tries, automata and minimum automata from closed σ-frequent
itemset collections with different minimum frequency threshold values σ and
several random permutations of the items.

1 http://kdd.ics.uci.edu

An Automata Approach to Pattern Collections 143

Table 1. The sizes of closed itemsets and tries on Internet Usage data

closed itemsets trie
σ the number of itemsets size minimum size mean size maximum size

0.20 1856 8493 3713 3713 3713
0.19 2228 10345 4457 4457 4457
0.18 2667 12559 5335 5335 5335
0.17 3246 15552 6493 6493 6493
0.16 4013 19571 8027 8027 8027
0.15 4983 24738 9967 9967 9967
0.14 6290 31805 12581 12581 12582
0.13 7998 41178 15997 15998 15999
0.12 10472 55017 20945 20947 20949
0.11 13802 74167 27605 27608 27616
0.10 18594 102152 37189 37196 37210
0.09 25686 144392 51373 51382 51415
0.08 36714 211617 73429 73443 73496
0.07 54550 323187 109101 109147 109287
0.06 84873 435804 169748 169844 170141
0.05 141568 893400 283137 283515 284508
0.04 260076 1705361 520157 521014 524750

Table 2. The sizes of automata on Internet Usage data

automaton minimum automaton
σ minimum size mean size maximum size minimum size mean size maximum size

0.20 2927 2927 2927 2315 2431 2537
0.19 3398 3398 3398 2557 2723 2848
0.18 3937 3937 3937 2821 3046 3227
0.17 4617 4617 4617 3078 3460 3697
0.16 5485 5485 5485 3559 3876 4150
0.15 6556 6556 6556 3860 4447 4818
0.14 7964 7964 7965 4207 5073 5520
0.13 9773 9774 9775 4703 5878 6651
0.12 12348 12350 12352 5626 6888 7893
0.11 15779 15782 15790 6562 8515 9618
0.10 20672 20679 20693 8528 10329 11852
0.09 27865 27874 27907 9770 13040 15050
0.08 38994 39008 39061 12607 17558 20101
0.07 56931 56977 57117 18726 25003 28936
0.06 87355 87451 87748 25977 34694 38919
0.05 144151 144529 145522 46814 58581 70426
0.04 262764 263621 267357 67080 102552 121889

The results are shown in Table 1 and Table 2 for the Internet Usage data,
and in Table 3 and Table 4 for the Census IPUMS data. The columns of Table 1
and Table 3 correspond to the number of closed frequent itemsets, the number
of elements (including one extra element representing the frequency) in the rep-

144 T. Mielikäinen

Table 3. The sizes of closed itemsets and tries on Census IPUMS data

closed itemsets trie
σ the number of itemsets size minimum size mean size maximum size

0.30 1335 8933 2882 3531 4655
0.29 1505 10216 3112 3884 5073
0.28 1696 11639 3635 4345 5854
0.27 1948 13626 4160 5067 6768
0.26 2293 16318 5004 6198 8373
0.25 2577 18514 5480 6669 9935
0.24 3006 21849 6368 7854 10475
0.23 3590 26532 7766 9370 12359
0.22 4271 31928 9231 11173 14273
0.21 5246 39941 11461 14058 18632
0.20 6689 52229 14112 18019 24998
0.19 8524 68826 18035 23103 29896
0.18 10899 91171 23702 29091 35668
0.17 13435 114705 28202 35351 47138
0.16 16907 138415 36867 45059 59808
0.15 22185 199791 48485 60630 85813
0.14 29194 274170 63282 78036 100977

Table 4. The sizes of automata on Census IPUMS data

automaton minimum automaton
σ minimum size mean size maximum size minimum size mean size maximum size

0.30 2821 3470 4594 2780 3432 4534
0.29 3035 3807 4996 2998 3759 4919
0.28 3541 4251 5760 3513 4196 5666
0.27 4034 4941 6642 4010 4861 6524
0.26 4807 6001 8176 4665 5863 7982
0.25 5235 6424 9690 5086 6265 9446
0.24 6031 7517 10138 5828 7311 9913
0.23 7283 8887 11876 7089 8587 11403
0.22 8533 10475 13575 8252 10028 12887
0.21 10379 12976 17550 9789 12241 16468
0.20 12279 16186 23165 11493 14930 21332
0.19 15149 20217 27010 13489 18271 24124
0.18 19259 24648 31225 16873 21773 28004
0.17 22051 29200 40987 18506 25376 34836
0.16 28108 36300 51049 23135 29617 39889
0.15 35331 47476 72659 28517 38919 59756
0.14 44003 58757 81698 33280 46004 67153

resentations of the itemsets as a list, and minimum, average and maximum sizes
of the tries over 50 random orderings of the items. The columns of Table 2 and
Table 4 correspond to minimum, average and maximum sizes of the automata
and minimized automata, over the same random orderings than for the tries.

An Automata Approach to Pattern Collections 145

Table 5. The sizes of commutative automata on Internet Usage data

itemset collection automaton minimum automaton
σ the number of itemsets the number of states the number of states

0.20 2927 2927 1665
0.19 3398 3398 1866
0.18 3937 3937 2112
0.17 4617 4617 2368
0.16 5485 5485 2680
0.15 6556 6556 3046
0.14 7965 7964 3520
0.13 9775 9773 4014
0.12 12352 12348 4799
0.11 15790 15779 5716
0.10 20693 20672 7137
0.09 27908 27865 9095
0.08 39092 38994 11872
0.07 57174 56931 16695
0.06 87974 87355 24700
0.05 145974 144151 39600
0.04 268543 262760 70370

Table 6. The sizes of commutative automata on IPUMS Census data

itemset collection automaton minimum automaton
σ the number of itemsets the number of states the number of states

0.30 9481 2610 2133
0.29 11071 2934 2389
0.28 13047 3299 2729
0.27 15667 3771 3159
0.26 19601 4390 3617
0.25 22357 4910 4000
0.24 26574 5676 4623
0.23 34900 6698 5471
0.22 56778 7845 6368
0.21 68897 9411 7493
0.20 91737 11546 9124
0.19 157549 14163 11156
0.18 256899 17356 13732
0.17 387431 20720 16484
0.16 532833 25056 19389
0.15 863202 31217 23453
0.14 1854484 39110 29260

The automata and minimum automata representations show clear improve-
ment over direct listing of itemsets and their frequencies or the trie represen-
tations in terms of the space consumption. Also, the minimization seems to
simplify the automata a reasonable amount.

146 T. Mielikäinen

We experimented with commutative automata, too. More specifically, we
constructed commutative automata based on closures for σ-frequent itemsets
with several minimum frequency threshold values σ and minimized the au-
tomata. The results of these commutative automata experiments for the In-
ternet Usage data and the IPUMS Census data are shown in Table 5 and Ta-
ble 6, respectively. Again, the automata representation and the minimization of
the automata show clear improvement in the number of states needed in the
representation.

8 Conclusions

In this paper we have described how finite automata could be used to support
pattern discovery, in particular, to help the analysis of the σ-frequent itemset
collections. We suggested representations of itemset collections based on deter-
ministic finite automata that enable time-efficient queries, space-efficient repre-
sentation, and quite understandable description of the itemset collections. An
additional benefit of this kind of representations is that automata can be visual-
ized as graphs. We described how the automata approach can be used to express
clusterings of the itemsets and how the itemset collection can be hierarchically
described by a refining series of automata.

The automata approach seems to be promising also for use in inductive
databases and there are several interesting questions related to representing con-
densed representations of itemset collections by automata:

– How itemset collections could and should be represented by automata? The
approaches described in this paper seem to be quite reasonable but other
kinds of representations could suitable when there is some domain knowledge
available.

– What kinds of patterns are decent for automata representations? Many kinds
of patterns can be represented as strings. However, it is not always clear how
the patterns should be represented as strings most conveniently. Although
some patterns could not be represented as strings very naturally, the au-
tomata approach might still have something to offer the patterns of that
kind.

– How to find the best ordering for the items? Even in the case of tries
this seems to be a challenging problem. Finding the ordering that produces
the smallest automaton for a pattern collection seems to be computation-
ally even more difficult due to more complicated dependencies between the
states. Still, there might exist accurate approximation algorithms and effi-
cient heuristics to at least locally improving the item orderings. Random
orderings are also reasonable way to reorder items as each random permu-
tation emphasizes different aspects of the pattern collection which supports
the exploratory nature of data mining. There might be, however, more useful
ways to generate permutations than uniformly. An important question for
finding the best ordering is what is the best ordering.

An Automata Approach to Pattern Collections 147

Acknowledgments. I wish to thank the anonymous reviewers for their con-
structive comments and illuminating insights.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993. ACM Press (1993) 207–216

2. Goethals, B., Zaki, M.J., eds.: Proceedings of the Workshop on Fre-
quent Itemset Mining Implementations (FIMI-03), Melbourne Florida, USA,
November 19, 2003. Volume 90 of CEUR Workshop Proceedings. (2003)
http://CEUR-WS.org/Vol-90/.

3. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed represen-
tations. In Simoudis, E., Han, J., Fayyad, U.M., eds.: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96).
AAAI Press (1996) 189–194

4. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4
(2003) 69–77

5. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of The ACM 39 (1996) 58–64

6. Mannila, H.: Inductive databases and condensed representations for data mining.
In Maluszynski, J., ed.: Logic Programming, Proceedngs of the 1997 International
Symposium, Port Jefferson, Long Island, N.Y., October 13-16, 1997. MIT Press
(1997) 21–30

7. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering all most specific sentences. ACM Transactions on Database Systems
28 (2003) 140–174

8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In Beeri, C., Buneman, P., eds.: Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings. Volume 1540 of Lecture Notes in Computer Science. Springer (1999)
398–416

9. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of Boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7 (2003) 5–22

10. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns.
In: Proceedings of the Twenteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California,
USA. ACM (2001)

11. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In Cercone, N., Lin, T.Y., Wu, X., eds.: Proceedings of the 2001
IEEE International Conference on Data Mining, 29 November - 2 December 2001,
San Jose, California, USA. IEEE Computer Society (2001) 305–312

12. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. [31]
71–82

148 T. Mielikäinen

13. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In Elomaa,
T., Mannila, H., Toivonen, H., eds.: Principles of Data Mining and Knowledge
Discovery, 6th European Conference, PKDD 2002, Helsinki, Finland, August 19-
23, 2002, Proceedings. Volume 2431 of Lecture Notes in Artificial Intelligence.
Springer (2002) 74–865

14. Pei, J., Dong, G., Zou, W., Han, J.: On computing condensed pattern bases.
In Kumar, V., Tsumoto, S., eds.: Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City,
Japan. IEEE Computer Society (2002) 378–385

15. Mielikäinen, T., Mannila, H.: The pattern ordering problem. [31] 327–338
16. Mielikäinen, T.: Chaining patterns. In Grieser, G., Tanaka, Y., Yamamoto, A.,

eds.: Discovery Science, 6th International Conference, DS 2003, Sapporo, Japan,
October 17–19, 2003, Proceedings. Volume 2843 of Lecture Notes in Computer
Science. Springer (2003) 232–243

17. Mielikäinen, T.: Implicit enumeration of patterns. In Goethals, B., Siebes, A., eds.:
Knowledge Discovery in Inductive Databases, 3rd International Workshop, KDID
2004, Pisa, Italy, September 20, 2004, Revised Papers. Volume 3377 of Lecture
Notes in Computer Science. Springer (2004)

18. Mielikäinen, T.: Separating structure from interestingness. In Dai, H., Srikant, R.,
Zhang, C., eds.: Advances in Knowledge Discovery and Data Mining, 8th Pacific-
Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004, Proceedings.
Volume 3056 of Lecture Notes in Artificial Intelligence. Springer (2004) 476–485

19. Vitter, J.S.: Design and analysis of dynamic huffman codes. Journal of the Asso-
ciation for Computing Machinery 34 (1987) 825–845

20. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R., eds.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press (1996) 307–328

21. Hafez, A., Deogun, J., Raghavan, V.V.: The item-set tree: A data structure for
data mining. In Mohania, M.K., Tjoa, A.M., eds.: Data Warehousing and Knowl-
edge Discovery, First International Conference, DaWaK ’99, Florence, Italy, August
30 - September 1, 1999, Proceedings. Volume 1676 of Lecture Notes in Artificial
Intelligence. Springer (1999) 183–192

22. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12 (2000) 372–390

23. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Auotmata Theory,
Languages and Computation. 2nd edn. Addison-Wesley (2001)

24. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1 (1997) 241–258

25. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers 45 (1996) 993–1002

26. Zantema, H., Bodlaender, H.L.: Finding small equivalent decision trees is hard.
International Journal of Foundations of Computer Science 11 (2000) 343–354

27. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24 (1992) 293–318

28. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theo-
retical Computer Science 92 (1992) 181–189

29. Watson, B.W.: A new algorithm for the construction of minimal acyclic DFAs.
Science of Computer Programming 48 (2003) 81–97

An Automata Approach to Pattern Collections 149

30. Mielikäinen, T.: Frequency-based views to pattern collections. In Hammer, P.L.,
ed.: Proceedings of the IFIP/SIAM Workshop on Discrete Mathematics and Data
Mining, SIAM International Conference on Data Mining (2003), May 1-3, 2003,
San Francisco, CA, USA. SIAM (2003)

31. Lavrac, N., Gamberger, D., Blockeel, H., Todorovski, L., eds.: Knowledge Discovery
in Databases: PKDD 2003, 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-
26, 2003, Proceedings. Volume 2838 of Lecture Notes in Artificial Intelligence.
Springer (2003)

Implicit Enumeration of Patterns

Taneli Mielikäinen

HIIT Basic Research Unit,
Department of Computer Science,

University of Helsinki, Finland
Taneli.Mielikainen@cs.Helsinki.FI

Abstract. Condensed representations of pattern collections have been
recognized to be important building blocks of inductive databases, a
promising theoretical framework for data mining, and recently they have
been studied actively. However, there has not been much research on how
condensed representations should actually be represented.

In this paper we study implicit enumeration of patterns, i.e., how to
represent pattern collections by listing only the interestingness values of
the patterns. The main problem is that the pattern classes are typically
huge compared to the collections of interesting patterns in them. We
solve this problem by choosing a good ordering of listing the patterns in
the class such that the ordering admits effective pruning and prediction
of the interestingness values of the patterns. This representation of in-
terestingness values enables us to quantify how surprising a pattern is
in the collection. Furthermore, the encoding of the interestingness val-
ues reflects our understanding of the pattern collection. Thus the size of
the encoding can be used to evaluate the correctness of our assumptions
about the pattern collection and the interestingness measure.

1 Introduction

One of the most important approaches to mine data is pattern discovery which
aims to extract interesting patterns (possibly with some interestingness values
associated to each of them) from data. The most prominent example of a pattern
discovery task is the frequent itemset mining problem [1]:

Problem 1 (Frequent Itemset Mining). Given a multi-set d = {d1 . . . dn} (a trans-
action database) of subsets (transactions) of a set I of items and a minimum
frequency threshold σ ∈ [0, 1], find the collection of σ-frequent itemsets in d, i.e.,
the collection

F(σ, d) = {X ⊆ I : fr(X, d) ≥ σ}
where

fr(X, d) =
supp(X, d)

n
,

supp(X, d) = |cover(X, d)|
and

cover(X, d) = {i : X ⊆ di, 1 ≤ i ≤ n} .

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 150–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Implicit Enumeration of Patterns 151

There exist techniques to find all frequent itemsets reasonably efficiently [2].
The techniques for frequent itemset mining have been adapted to mine also
other kinds of frequent patterns such as graphs [3, 4, 5, 6] and sequences [7, 8, 9].
Also other measures of interestingness have been considered [10]. In general, the
problem can be formulated as the discovery of interesting patterns as follows:

Problem 2 (Discovery of Interesting Patterns). Given a pattern class P, an in-
terestingness measure φ : P → [0, 1] and a minimum interestingness threshold
σ ∈ [0, 1] find the collection of σ-interesting patterns. That is, find the collection

P(σ, φ) = {p ∈ P : φ(p) ≥ σ} .

A major advantage of frequent itemsets is that they can be computed from
data without much domain knowledge: any transaction database determines
an empirical joint probability distribution over the item combinations and the
marginal probabilities of the combinations with high probability can be consid-
ered as a reasonable way to summarize the empirical joint probability distri-
bution determined by the data. The generality of this summarization approach
causes also troubles: the frequent itemset collections that describe data quite
well tend to be quite large. Although the frequent itemsets might be found effi-
ciently enough even from very large transaction databases, it is not certain that
an enormously large collection of frequent itemsets is very concise summary of
the data.

The problem of discovering too large frequent itemset collections to com-
prehend has been tried to solve by finding small sub-collections of the frequent
itemsets that are sufficient to determine which itemsets are frequent and what
are the frequencies of the frequent itemsets. Such sub-collections are often called
the condensed representations of frequent itemsets. (In general, the condensed
representations do not have to be sub-collections of patterns but just some data
structures from which it is possible to answer queries of certain kind accurately
and efficiently enough. In fact, the condensed representations were originally
introduced in this broader context [11].) The condensed representations of fre-
quent itemsets (and other interesting patterns) have been recognized to have an
important role in inductive databases which seems to be a promising theoretical
model for data mining [12, 13, 14]. Furthermore, many condensed representa-
tions of itemset collections are readily applicable to several other collections of
interesting patterns.

The condensed representations of frequent itemsets have studied actively and
several condensed representations, such as maximal itemsets [15], closed item-
sets [16], free itemsets [17], disjunction-free itemsets [18], disjunction-free gen-
erators [19], k-free itemsets [20] non-derivable itemsets [21], condensed pattern
bases [22], pattern orderings [23] and pattern chains [24], have been proposed.
However, not much has been done on how the condensed representations should
actually be represented although it is an important question: the representation
of the knowledge can drastically affect the efficiency of the inductive database
but it also affects the data analyst to comprehend or not to comprehend the
mining results.

152 T. Mielikäinen

In this paper we study how pattern collections and their interestingness values
can be represented by listing only the interestingness values of the patterns (and
not the actual patterns) in some suitable order. We describe how the pattern
enumeration space can be pruned by some structural properties of the pattern
collections and how the interestingness values can be deduced from the inter-
estingness values of the patterns earlier in the enumeration. This approach to
represent pattern collections suggests also an approach to quantify how surpris-
ing a pattern is with respect to the interestingness values of previously seen
patterns. The quantification of surprisingness seems to have some interest inde-
pendent from implicit enumerations. Furthermore, the size of the representation
reflects also how accurate our assumptions about the pattern collections are and
thus it could support us in the exploration of the collection.

The rest of the paper is organized as follows. In Section 2 we propose the idea
of implicitly enumerating all interesting patterns and their interestingness values
by listing the values in some convenient order. We discuss why this approach
should be considered at all as a reasonable way to represent pattern collections.
In Section 3 we describe different strategies to prune the pattern enumeration
space. In Section 4 we examine different ways to encode the interestingness values
based on the interestingness values of patterns seen previously in the enumera-
tion. In Section 5 we describe how the binary encodings of the interestingness
values give us a convenient way to quantify the surprisingness of the pattern with
respect to our knowledge about the interesting patterns obtained earlier in the
implicit enumeration of the pattern class. In Section 6 we experimentally evalu-
ate the space consumptions of the suggested implicit representations of pattern
collections. Section 7 is a short conclusion.

2 Implicit Pattern Enumeration

Usually it is not sufficient to discover only the interesting patterns but also their
interestingness values are needed. This is the case, for example, with frequent
itemsets: An important use of frequent itemsets is to find accurate association
rules.

Example 1 (Association Rules). Association rules are rules of form X ⇒ Y
where X and Y are itemsets. The accuracy acc(X ⇒ Y, d) of the rule X ⇒ Y
in a transaction database d is the fraction of transactions containing X that
contain also Y . That is,

acc(X ⇒ Y, d) =
fr(X ∪ Y, d)

fr(X, d)
.

Thus, it would usually make more sense to compute φ|P(σ,φ), the restriction
of the interestingness measure φ to the collection P(σ, φ) of σ-interesting pat-
terns, instead of a pattern collection P(σ, φ) and the interestingness values of
the patterns in P(σ, φ).

Most of the condensed representations of pattern collections are based on
listing some sub-collection of the interesting patterns (and their interestingness

Implicit Enumeration of Patterns 153

values) that is sufficient to determine the whole collection of interesting patterns
(and their interestingness values). However, it is not clear whether this is always
the best way to describe the collections of interesting patterns.

If the collection of interesting patterns is dense, then listing all interesting
patterns with their interestingness values explicitly might not be very effective.
First, the object is not a relation but a function. Representations of the collection
as a list of pattern-interestingness pairs does not take this into account. Second,
the patterns often share some parts with each other. For example, a collection
of frequent itemsets contain all subsets of the largest itemset in the collection.
These observations, in fact, have already been exploited, for example, in trie
presentations of pattern collections [25, 26], in pattern automata [27], and in
pattern chains [24]. Using these approaches the sizes of the pattern collection
representations can be reduced considerably.

A further step to avoid listing all pattern explicitly, even by tries or automata,
is to describe the pattern collection and the interestingness values separately [28].
This sometimes leads to considerably small representations of the collections,
especially when approximate interestingness values suffice.

The natural next step is to consider how pattern collections and their inter-
esting values completely implicitly, i.e., by listing the interestingness values of
the patterns in the given pattern class. For example, the pattern class in the
case of frequent itemsets is all subsets of I and the interesting patterns in that
class are those subsets of I that are frequent enough in the given transaction
database. Unfortunately the whole pattern class can be very large even if the
number of interesting patterns is assumed to be relatively small. For example, in
the case of frequent itemset the whole pattern collection consists of 2|I| itemsets.
Thus, at first glance, this approach to describe pattern collections might seem to
be quite useless and uninteresting. However, the applicability of finding interest-
ing patterns relies on the assumption that the interestingness values have to be
evaluated only for relatively few patterns in the pattern collection. Hence the col-
lection of potentially interesting patterns can be usually pruned very effectively.
Also, when considering the encoding of the interestingness values, the next inter-
estingness value in the enumeration can sometimes be predicted very accurately
from the previous values and thus only a small number of bits are needed to
correct that prediction. The implicit enumeration of σ-interesting patterns can
be formulated as follows.

Definition 1 (Implicit Enumeration of Patterns). An implicit enumera-
tion of σ-interesting patterns in a pattern class P with respect to an interesting-
ness measure φ consists of

– a minimum interestingness threshold σ ∈ [0, 1],
– a sequence s ∈ [0, 1]∗ of interestingness values from the range of φ|P(σ,φ),

and
– an algorithm AP,Φ for the collection P of patterns and for the class Φ of

interestingness measures that computes the mapping φ|P(σ,φ) given the se-
quence s and the minimum interestingness value threshold σ ∈ [0, 1].

154 T. Mielikäinen

The intuition behind this definition is as follows. The interestingness values
needed to represent to describe φ|P(σ,φ) are listed as a sequence s ∈ [0, 1]∗. The
algorithm AP,Φ is defined to the pattern collection P and some particular class
Φ of interestingness measures and it decodes s to φ|P(σ,φ) with the additional
information of the minimum interestingness value threshold σ ∈ [0, 1]. An exam-
ple of such pattern classes is the collection of all itemsets over I. A natural class
of interestingness measures for itemsets are the frequencies induced by different
transaction databases.

In the next two sections we consider how the pattern collection pruning and
binary encoding of interestingness values can be realized as implicit represen-
tations of pattern collections. For the sake of brevity, we describe the methods
using frequent itemsets instead of general interesting pattern collections but the
methods can be adapted to several other pattern classes and interestingness
measures.

3 Enumeration Space Pruning

Possibilities to prune infrequent itemsets from the collection 2I of all subsets of
the set I of items depend strongly on the order in which the frequencies of the
itemsets are determined. At least in principle the ordering can be used to reflect
the viewpoint of the data analyst to the data besides describing the patterns in
a small space. Let <I be an ordering over the items in I and let A1, . . . , A|I| be
the items in I in ascending order in <I . (For example, the items can be assumed
to be integers 1, . . . , |I|.) For rest of the paper we use the following ordering for
itemsets X, Y ⊆ I:

X ≺ Y ⇐⇒ |X| < |Y | ∨ (|X| = |Y | ∧min (Y \X) <I min (X \ Y)) . (1)

Using this ordering for itemsets, we shall next consider different strategies to
prune the enumeration space.

3.1 Implicit Frequent Itemset Representation

A very natural way to prune infrequent itemsets is to evaluate frequencies of
itemsets levelwise from the smallest to the largest itemset, i.e., from the most
general to the most specific itemset. This ordering enables effective pruning
due to two most well-known pruning properties of frequent itemsets: the anti-
monotonicity of frequencies (Proposition 1) and the downward-closedness of the
collection of frequent itemsets (Proposition 2). The anti-monotonicity property
says that the frequency of an itemset is never greater than the frequency of its
subset:

Proposition 1 (Anti-monotonicity). Let X, Y ⊆ I such that X ⊆ Y . Then
fr(X, d) ≥ fr(Y, d).

In fact, the anti-monotonicity of the frequencies implies also the downward-
closedness of frequent itemsets: all subsets of a frequent itemset are frequent and
all supersets of an infrequent itemset are infrequent.

Implicit Enumeration of Patterns 155

Proposition 2 (Downward-Closedness). The collection F(σ, d) of frequent
itemsets is downward closed, i.e., for all X ∈ F(σ, d) hold Y ⊆ X ⇒ Y ∈
F(σ, d).

For example, the efficiency of the famous Apriori algorithm is mostly due
to these pruning rules [25]. It is immediate that the number of frequencies to be
listed using the rules is at most |I| |F(σ, d)|. This bound is also tight: if the empty
itemset is the only frequent itemset then we have to evaluate the frequencies of
all singleton subsets of I.

Thus, by listing frequencies from the smallest to the largest itemset as defined
by Equation 1, and pruning the enumeration space by the rules of Proposition 1
and Proposition 2, it is sufficient to determine frequencies for all frequent item-
sets and the itemsets whose all proper subsets are frequent, i.e., the collection
of minimal infrequent itemsets, denoted by

F(σ, d)− = {X ⊆ I : X /∈ F(σ, d), Y ∈ F(σ, d)∀Y ⊂ X} .

Furthermore, as the frequency of the empty itemset is always 1, it is not needed in
the sequence of frequencies. Thus, the whole collection sufficient for the implicit
enumeration is

F(σ, d)∗ =
(F(σ, d) ∪ F(σ, d)−) \ {∅} .

Let X0, X1, . . . , X|F(σ,d)∗| be the itemsets in F(σ, d)∗ ∪ {∅} ordered in as-
cending order with respect to ≺, i.e., Xi−1 ≺ Xi for all 1 ≤ i ≤ |F(σ, d)∗| and
X0 = ∅. Then the sequence sF(σ,d)∗ ∈ [0, 1]|F(σ,d)∗| is

sF(σ,d)∗ = s[1] . . . s[|F(σ, d)∗|] = fr(X1, d) . . . fr(X|F(σ,d)∗|, d). (2)

The sequence sF(σ,d)∗ can be decoded to the frequencies of σ-frequent item-
sets in d by Algorithm 1. Thus, we have the following result:

Proposition 3. A minimum frequency threshold σ, a sequence sF(σ,d)∗ , Algo-
rithm 1, the set I of items and the ordering <I form an implicit frequent itemset
representation of fr |F(σ,d).

3.2 Implicit Frequent Free Itemset Representation

It has been recently noticed that some frequencies of frequent itemsets can be
deduced from the frequencies of other frequent itemsets [29]. The simplest ex-
ample of this phenomenon are free itemsets [17] (also known as generators [16]
and key patterns [29]).

Definition 2 (Free Itemsets). An itemset X ⊆ I is free if fr(X, d) < fr(Y, d)
for all Y ⊂ X. The collection of σ-frequent free itemsets in d is denoted by
G(σ, d).

The collections of free itemsets has the desirable property of being downward
closed, similarly to the collections of frequent itemsets. That is, all subsets of
free itemsets are free itemsets, too.

156 T. Mielikäinen

Algorithm 1
Input: The set I of items, an ordering <I over I, a minimum frequency threshold

σ ∈ [0, 1], and a sequence s of frequencies in the range of fr |F(σ,d)∗ .
Output: The mapping fr |F(σ,d).
1: function Frequent-Itemsets(I, <I , σ, s)
2: fr(∅, d) ← 1
3: F(σ, d) ← {∅}
4: i ← 1
5: K ← {{A} : A ∈ I}
6: while K 	= ∅ and i < |s| do
7: F ← ∅
8: for each X ∈ K in ascending order in ≺ do
9: if s[i] ≥ σ then

10: fr(X, d) ← s[i]
11: F ← F ∪ {X}
12: end if
13: i ← i + 1
14: end for
15: F(σ, d) ← F(σ, d) ∪ F
16: K ← {X ∪ Y : X, Y ∈ F , |X ∪ Y | = |X| + 1, (Z ⊂ (X ∪ Y) ⇒ Z ∈ F(σ, d))}
17: end while
18: return fr |F(σ,d)

19: end function

Although the frequencies of all free itemsets in d determine all frequencies of
all itemsets, the frequencies of σ-frequent free itemsets are not always sufficient
determine the frequencies of all frequent itemsets correctly: the frequencies com-
puted from the frequencies of the σ-frequent free itemsets are each at least σ. In
addition to G(σ, d) also the collection IG(σ, d) of the minimal σ-infrequent free
itemsets (i.e., the free itemsets X such that fr(X, d) < σ and Y ∈ G(σ, d) for all
Y ⊂ X) is needed.

When enumerating the frequent itemsets implicitly by free itemsets, also the
frequencies of those non-free itemsets whose all subsets are frequent free itemsets
are needed in the implicit representation. Let us denote the itemsets that are
needed in the representation but are not σ-frequent free itemsets by

G(σ, d)− = {X ⊆ I : X /∈ G(σ, d), Y ∈ G(σ, d)∀Y ⊂ X} .

The collection sufficient for the implicit enumeration based on free itemsets is

G(σ, d)∗ =
(G(σ, d) ∪ G(σ, d)−) \ {∅} .

Let X0, X1, . . . , X|G(σ,d)∗| be the itemsets in G(σ, d)∗∪{∅} ordered in ascend-
ing order with respect to ≺, i.e., Xi−1 ≺ Xi for all 1 ≤ i ≤ |G(σ, d)∗| and X0 = ∅.
Then the sequence sG(σ,d)∗ ∈ [0, 1]|G(σ,d)∗| is

sG(σ,d)∗ = s[1] . . . s[|G(σ, d)∗|] = fr(X1, d) . . . fr(X|G(σ,d)∗|, d). (3)

Implicit Enumeration of Patterns 157

Algorithm 2
Input: The set I of items, an ordering <I over I, a minimum frequency threshold

σ ∈ [0, 1], and a sequence s of frequencies in the range of fr |G(σ,d)∗ .
Output: The mapping fr |F(σ,d).
1: function Frequent-Free-Itemsets(I, <I , σ, s)
2: fr(∅, d) ← 1
3: G(σ, d) ← {∅}
4: IG(σ, d) ← ∅
5: i ← 1
6: K ← {{A} : A ∈ I}
7: while K 	= ∅ and i < |s| do
8: F ← ∅
9: for each X ∈ K in ascending order in ≺ do

10: if Y ∈ G(σ, d) for all Y ⊂ X such that |X| = |Y | + 1 then
11: if s[i] ≥ σ then
12: F ← F ∪ {X}
13: fr(X, d) ← s[i]
14: if s[i] < fr(Y, d) for all Y ⊂ X such that |X| = |Y | + 1 then
15: G(σ, d) ← G(σ, d) ∪ {X}
16: end if
17: else
18: IG(σ, d) ← IG(σ, d) ∪ {X}
19: end if
20: i ← i + 1
21: else
22: if ∀Y ⊆ X, |X| = |Y | + 1 : Y /∈ IG(σ, d) then
23: F ← F ∪ {X}
24: fr(X, d) ← min {Y ⊂ X : |X| = |Y | + 1}
25: end if
26: end if
27: end for
28: F(σ, d) ← F(σ, d) ∪ F
29: K ← {X ∪ Y : X, Y ∈ F , |X ∪ Y | = |X| + 1, (Z ⊂ (X ∪ Y) ⇒ Z ∈ F(σ, d))}
30: end while
31: return fr |F(σ,d)

32: end function

The frequencies of σ-frequent itemsets in d can be decoded from the sequence
sG(σ,d)∗ by Algorithm 2. Thus, we have:

Proposition 4. A minimum frequency threshold σ, a sequence sG(σ,d)∗ , Algo-
rithm 2, the set I of items and the ordering <I form an implicit frequent free
itemset representation of fr |F(σ,d).

3.3 Implicit Frequent Closed Itemset Representation

Instead of looking for itemsets that have lower frequencies than any of their
subsets, one can look for itemsets whose frequencies are greater than any of
their supersets. These itemsets are called the closed itemsets [16].

158 T. Mielikäinen

Definition 3 (Closed Itemsets). An itemset X ⊆ I is closed if fr(X, d) >
fr(Y, d) for all Y ⊃, Y ⊆ I. The collection of σ-frequent closed itemsets in d is
denoted by C(σ, d).

The collection F(σ, d) of σ-frequent itemsets and their frequencies can be
determined from the collection C(σ, d) of σ-frequent closed itemsets and their
frequencies as follows:

F(σ, d) = {X ⊆ I : X ⊆ Y ∈ C(σ, d)}
and

fr(X, d) = max {fr(Y, d) : X ⊆ Y ∈ C(σ, d)} .

Closed itemsets are a very desirable representation of the frequent itemsets
when the itemsets are represented explicitly (e.g., as a list or as a trie) for many
reasons. For example, the number of (σ-frequent) closed itemsets is never greater
than the number of (σ-frequent) free itemsets. To see this, let us consider the
closures of itemsets.

Definition 4 (Closures of Itemsets). A closure cl(X, d) of an itemset X ⊆ I
with respect to a transaction database d is the intersection of the transactions in
d containing X, i.e.,

cl(X, d) =
⋂

i∈cover(X,d)

di.

Each itemset has only one closure. Thus, the number of free itemsets is at
least the number of closures of free itemsets. The closures of frequent free item-
sets are also frequent itemsets. Furthermore, it is easy to see that there is a free
frequent itemset for each closure of frequent itemset. Thus, based on Proposi-
tion 5, the number of free frequent itemsets is at least the number of closed
frequent itemsets.

Proposition 5. An itemset X ⊆ I is closed in d if and only if cl(X, d) = Y .
Furthermore, {cl(X, d) : X ∈ F(σ, d)} is equal to C(σ, d).

Proof. If X is closed, then fr(X, d) > fr(Y, d) for all Y ⊃ X, Y ⊆ I. This implies
that there is i ∈ cover(X, d) such that di contains X but not Y .

If X is not closed, then there is Y ⊃ X, Y ⊆ I such that fr(X, d) = fr(Y, d),
and thus cover(X, d) = cover(Y, d). Thus, X ⊂ cl(X, d) = cl(Y, d).

Each closed itemset is its own closure. Thus, the collection of the closures of
frequent itemsets contains at least each closed frequent itemset.

Assume that there is an itemset X ∈ F(σ, d) \ C(σ, d) that is a closure of
some itemset Y ⊂ X. However, cl(X, d) ⊃ X since X is not closed and thus it
is not its own closure. Thus, X cannot be the closure of Y . #�

Proposition 5 explicates perhaps the greatest advantage of closed itemsets,
namely their interpretations as intersections of transactions in a transaction
database d: each closed itemset is an intersection of certain subset of transactions
and each subset of transaction corresponds to some closed itemset.

Implicit Enumeration of Patterns 159

Another advantage of closed itemsets compared to free itemsets is that the
collection σ-frequent closed itemsets is a sufficient representation of frequent
itemsets, i.e., no infrequent itemsets are needed in the closed itemset represen-
tation of frequent itemsets, whereas σ-frequent free itemsets are not.

Furthermore, the number of frequent closed itemsets can be sometimes even
smaller than the number of frequent free itemsets as shown by the following
example:

Example 2. Let d = {{A, B} , {C}} and let the minimum frequency threshold σ
be 1/2. Then the σ-frequent closed itemsets are ∅, {A, B} and {C} whereas the
σ-frequent free itemsets are ∅, {A}, {B} and {C}.

A major disadvantage of closed itemsets to be represented implicitly as a list
of frequencies became apparent in the previous example: the collection of closed
itemsets is not necessarily downward closed. A straightforward solution would
be to list also all subsets of closed itemsets that are not closed. In addition to
that also some infrequent itemsets would have to be listed. Thus, much of the
benefits of closed itemsets would be lost.

Fortunately, it is possible to find a more suitable encoding for the closed
itemsets without losing their benefits: Instead of listing just frequencies, the list
can consist of pairs for each (σ-frequent) closed itemset. The pair corresponding
to closed itemset X consists of its distance from previous closed itemset in the
enumeration and the frequency fr(X, d).

Let X0, X1, . . . , X|C(σ,d)| be the itemsets in C(σ, d) ∪ ∅ ordered in ascending
order with respect to ≺, i.e., Xi−1 ≺ Xi for all 1 ≤ i ≤ |C(σ, d)|. Then the
sequence sC(σ,d) is consists of pairs

s[i] = 〈fr(Xi, d), δ(Xi−1, Xi)〉 (4)

where δ(X, Y) is the distance of itemsets X and Y in the ordering ≺, i.e.,
δ(X, Y) = |{Z ⊆ I : X ≺ Z
 Y }|+ |{Z ⊆ I : Y ≺ Z
 X}|. Thus,

sC(σ,d) = s[1] . . . s[|C(σ, d) \ {∅}|].
Since δ(X, Y) = |δ(∅, X)− δ(∅, Y)|, it is sufficient to be able to compute the

distance of an itemset from the empty itemset. First, we know that there are
|X|−1∑
k=0

(|I|
k

)

itemsets smaller than X in cardinality. In addition to that we need to know
how many itemsets Y ⊆ I of the same cardinality such that Y ≺ X there are.
This can be counted by partitioning the set {Y ⊆ I : |Y | = |X|} into groups
based on how long prefix they share with X. The length l-prefix of an itemset
X is an itemset consisting of its l smallest elements and it is denoted by Xl.
Let I<A = {B ∈ I : B <I A}. Then the number of itemsets Y ⊆ I such that
|X| = |Y |, Y ≺ X and sharing l-prefix with X is

|X\Xl|∑
k=1

(∣∣I<max X\Xl

∣∣ \Xl

k

)(∣∣I \ I<max X\Xk

∣∣
|X \Xl| − k

)

160 T. Mielikäinen

Algorithm 3
Input: The set I of items, an ordering <I over I, a minimum frequency threshold

σ ∈ [0, 1], and a sequence s of pairs as defined by Equation 4.
Output: The mapping fr |F(σ,d).
1: function Frequent-Closed-Itemsets(I, <I , σ, s)
2: C(σ, d) ← ∅
3: p ← 0
4: for i = 1, . . . , |s| do
5: 〈f, j〉 ← s[i]
6: p ← p + j
7: k ← 0
8: p′ ← p

9: while p′ −
(

|I|
k

)
≥ 0 do

10: p′ ← p′ −
(

|I|
k

)

11: k ← k + 1
12: end while
13: X ← ∅
14: Y ← I
15: while k > 0 do
16: A ← min Y
17: if p′ −

(
|Y |−1
k−1

)
≥ 0 then

18: p′ ← p′ −
(

|Y |−1
k−1

)

19: X ← X ∪ {A}
20: k ← k − 1
21: end if
22: end while
23: fr(X, d) ← f
24: C(σ, d) ← C(σ, d) ∪ {X}
25: end for
26: F(σ, d) ← ∅
27: F ← C(σ, d)
28: while F 	= ∅ do
29: F(σ, d) ← F(σ, d) ∪ F
30: K ← ∅
31: for each X ∈ F do
32: for each Y ⊆ X such that |Y | = |X| − 1 do
33: if Y /∈ F(σ, d) or fr(Y, d) < fr(X, d) then
34: K ← K ∪ {Y }
35: fr(Y, d) ← fr(X, d)
36: end if
37: end for
38: end for
39: F ← K
40: end while
41: fr(∅, d) ← 1
42: return fr |F(σ,d)

43: end function

Implicit Enumeration of Patterns 161

because, by the definition of the ordering (Equation 1) and itemset Y is smaller
than X if and only if

min (Y \X) <I min (X \ Y) .

(These observations are implemented in Algorithm 3.)
The downside of this encoding is that expressing the distance from previous

closed itemset might cost even |I| bits. This is the case e.g. when I is the
only σ-frequent closed itemset, i.e., when d = {I, . . . , I}. Still, this is not very
bad compared to listing all frequencies of frequent itemsets, i.e., the (implicit)
frequent itemset representation.

The frequencies of the σ-frequent itemsets in d can be decoded from the
sequence sC(σ,d) by Algorithm 3 and thus we have the following result:

Proposition 6. A minimum frequency threshold σ, a sequence sC(σ,d), a se-
quence sC(σ,d), Algorithm 3, the set I of items and the ordering <I form an
implicit frequent closed itemset representation of fr |F(σ,d).

3.4 Implicit Frequent Non-derivable Itemset Representation

The idea of deducing the frequencies of the frequent itemsets from the frequencies
of their subsets can be further developed as follows. Based on the inclusion-
exclusion principle, the inequality

∑
Y ⊆Z⊆X

(−1)|Z\Y |fr(Z, d) ≥ 0

holding for all Y ⊆ X gives a lower bound fr(X, d) and an upper bound fr(X, d)
for the frequency fr(X, d) of each itemset X based on the frequencies of its
subsets (see Equation 5 and Equation 6).

fr(X, d) = min
Y ⊂X

⎧⎨
⎩

∑
Y ⊆Z⊂X

(−1)|X\Z|+1fr(Z, d) : |X \ Y | is odd

⎫⎬
⎭ (5)

fr(X, d) = max
Y ⊂X

⎧⎨
⎩

∑
Y ⊆Z⊂X

(−1)|X\Z|+1fr(Z, d) : |X \ Y | is even

⎫⎬
⎭ (6)

Note that the anti-monotonicity property is a special case of these bounds.
Namely, fr(X, d) ≤ minA∈X {fr(X \ {A} , d)}. In general these bounds lead to
the concept of non-derivable itemsets [21].

Definition 5 (Non-derivable Itemsets). An itemset X ⊆ I is non-derivable
in d if fr(X, d) < fr(X, d). The collection of σ-frequent non-derivable itemsets
is denoted by N (σ, d).

162 T. Mielikäinen

Algorithm 4
Input: The set I of items, an ordering <I over I, a minimum frequency threshold

σ ∈ [0, 1], and a sequence s of frequencies in the range of fr |N (σ,d)∗ .
Output: The mapping fr |F(σ,d).
1: function Frequent-Non-Derivable-Itemsets(I, <I , σ, s)
2: fr(∅, d) ← 1
3: N (σ, d) ← {∅}
4: i ← 1
5: K ← {{A} : A ∈ I}
6: while K 	= ∅ and i ≤ |s| do
7: F ← ∅
8: for each X ∈ K in ascending order in ≺ do
9: if fr(X, d) ≥ σ then

10: if fr(X, d) = fr(X, d) then
11: fr(X, d) ← fr(X, d)
12: F ← F ∪ {X}
13: else
14: if s[i] ≥ σ then
15: fr(X, d) ← s[i]
16: F ← F ∪ {X}
17: end if
18: i ← i + 1
19: end if
20: end if
21: end for
22: F(σ, d) ← F(σ, d) ∪ F
23: K ← {X ∪ Y : X, Y ∈ F , |X ∪ Y | = |X| + 1, (Z ⊂ (X ∪ Y) ⇒ Z ∈ F(σ, d))}
24: end while
25: return fr |F(σ,d)

26: end function

Unlike in the case of σ-frequent free itemsets, the frequencies of the σ-frequent
itemsets can be deduced from the frequencies of the σ-frequent non-derivable
itemsets since non-derivable infrequent itemsets can be detected based on the
fact that their upper and lower bounds do not agree.

The collection of non-derivable itemsets is known to be downward closed [21].
For the implicit representation, also the collection

N (σ, d)− =
{
X ⊆ I : fr(X, d) < fr(X, d) ≥ σ,X /∈ N (σ, d)

}
.

is needed. Thus, the collection sufficient for the implicit enumeration based on
non-derivable itemsets is

N (σ, d)∗ =
(N (σ, d) ∪N (σ, d)−) \ {∅} .

Let X0, X1, . . . , X|N (σ,d)∗| be the itemsets in N (σ, d)∗ ∪ {∅} ordered in as-
cending order with respect to ≺, i.e., Xi−1 ≺ Xi for all 1 ≤ i ≤ |N (σ, d)∗| and
X0 = ∅. Then the sequence sN (σ,d)∗ ∈ [0, 1]|N (σ,d)∗| is

sF(σ,d)∗ = s[1] . . . s[|N (σ, d)∗|] = fr(X1, d) . . . fr(X|N (σ,d)∗|, d). (7)

Implicit Enumeration of Patterns 163

Proposition 7. A minimum frequency threshold σ, a sequence sN (σ,d)∗ , Al-
gorithm 4, the set I of items and the ordering <I form an implicit frequent
non-derivable itemset representation of fr |F(σ,d).

4 Describing the Interestingness Values

In addition to the number of frequencies listed in the enumeration, also the
number of bits used to represent the frequencies can make a huge difference in
the space consumption of the representation of the frequent itemsets.

4.1 Worst Case Bounds

Clearly, each frequency can be represented by log (n + 1) bits as all possible
frequencies in d are 0/n, 1/n, . . . , n/n. (Recall that it is not necessary to round
the logarithms to integer values since using e.g. arithmetic coding it is possible
to represent each value by a fractional number of bits [30].) Moreover, as there
is a minimum frequency threshold σ, it is sufficient to be able to represent the
values &σn' /n, . . . , 1 to represent the frequencies of the frequent itemsets and
one value for infrequent itemsets. Thus,

log (*(1− σ) n++ 2) (8)

bits suffice to represent such values.
The number of bits needed can be further reduced by the frequencies of the

previous itemsets in the enumeration. The simplest solution is to prune by the
anti-monotonicity of frequencies. This way the frequency of a potentially frequent
itemset X can be encoded using

log (*(min {fr(X \ {A} , d) : A ∈ X} − σ) n++ 2) (9)

bits. This can provide considerable reduction to the space consumption of the
frequencies since in practice there seems to be many itemsets with frequencies
close to the minimum frequency threshold σ.

Also the lower and upper bounds for frequencies can be used to reduce the
space consumption: If fr(X, d) < σ or

⌈
fr(X, d)n

⌉
=

⌊
fr(X, d)n

⌋
then no bits

are needed to describe the frequency of X. Otherwise the sufficient number of
bits is

log
(⌊

fr(X, d)n
⌋−max

{&σn' − 1,
⌈
fr(X, d)n

⌉}
+ 1

)
. (10)

4.2 Predicting the Interestingness Values

The bounds given in Section 4.1 are tight in the worst case. In practice, however,
one can often improve the compression even further by modeling the frequen-
cies more accurately. Although it might be difficult to say for sure what is the
frequency of some particular itemset, it is usually possible to assign higher prob-
ability to the correct frequency than the average probability in the interval of
all possible frequencies.

164 T. Mielikäinen

Ratio

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

Ratio

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00

Fig. 1. The histograms of ratios fr(X, d)/fr(X, d) for Internet Usage data (top) and
IPUMS Census data (bottom)

Implicit Enumeration of Patterns 165

The simplest solution would be to count how many itemsets X have con-
tain frequency fr(X, d) in d, i.e., to compute the multinomial distribution over
the frequencies of the frequent itemsets. There are several difficulties with this
approach.

First, the lower bound fr(X, d) and the upper bound fr(X, d) often restrict
the interval of possible values of fr(X, d) considerably. This information is not
exploited at all with the straightforward construction of the multinomial distri-
bution. Second, also the distribution has to be described. Although the uniform
distribution over the interval

[
max

{
fr(X, d), (&σn' − 1) /n

}
, fr(X, d)

]
might be

quite crude estimate for the best distribution over the frequencies, no parameter
is needed to be described. The number of parameters needed with multino-
mial distribution is equal to the number of different frequencies in the range of
fr |F(σ,d). The latter problem with multinomial distribution can be diminished by
discretizing the frequencies but still it would be more preferable to have simpler
model even with slightly worse compression ratio.

Slightly more sophisticated solution can be derived from the concept of free
itemsets. Recall that itemset is not free if it has the same frequency than some
of its subsets. Free itemsets (see Definition 2) have shown good condensation
performance on real data [17]. Thus, it is natural to consider its relaxations
by considering how close the frequencies of the itemsets are to the minimum
frequencies of their subsets. The idea can be further improved by considering
the ratios between the minimum upper bound fr(X, d) and the correct fre-
quency fr(X, d). The histogram of the ratios are shown for two transaction
databases (See Section 6) in Figure 1. The ratios are concentrated close to
the ratio 1 and hence supporting the intuition behind the encoding of frequen-
cies as the ratios. Furthermore, both histograms could be approximated rea-
sonably well by polynomials with small number of terms since they are quite
smooth.

A different approach would be to first determine a good estimate of the fre-
quency fr(X, d) of the itemset X ⊆ I and then correct it. In practice, the maxi-
mum entropy estimate of fr(X, d) computed from the frequencies fr(Y, d) of the
subsets Y of the itemset X has been detected to be often a good estimate of the
correct frequency [31]. Thus, having a high probability for the maximum entropy
estimate of fr(X, d) and its near-by frequencies could result good compression.
The probabilities to the possible frequencies could be assigned in this case by
maximum-entropy centered Gaussian distributions with the variance estimated
from the true distribution of frequencies.

These models are still relatively simple as the dependencies of the frequencies,
for example, are not modeled directly. The usability of the models depends on the
actual transaction databases. Hence, evaluating the suitability of the different
models to the transaction database at hand should be the first step of modeling
the frequency distributions. Nevertheless, we believe that modeling of frequencies
has much unexplored potential in pattern discovery.

166 T. Mielikäinen

5 Measuring the Surprisingness

In addition to representing the frequencies of the frequent itemsets in small space,
the bit encodings can be used also to shed some light to pattern collections.
Namely, the number of bits needed reflects the complexity of the frequencies
with respect to the model of the frequency structure. The benefit of the binary
encodings is (at least) two-fold.

First, if the collection of σ-frequent itemsets does not compress much, then
the model of the frequencies might not be good enough. That is, the incompress-
ibility of the pattern collection implies that our hypothesis about the frequency
structure of the pattern collection should improved.

Second, the number of bits needed to describe some particular itemset gives
a measure how unexpected the itemset is with respect to the known frequencies
and our model of the frequency structure. As we know the sizes of the binary
representations for the frequencies of the itemsets in the collection, we can also
compare the complexities of the itemsets and spot the surprising ones, both
the itemsets with very small and very large frequency encodings, regions of
surprising itemsets and possible some explanations for the surprising values.
Very unexpected itemsets can also reveal the weaknesses of our model of the
frequency structure.

Although there are several good candidates (such as maximum entropy cen-
tered Gaussian distributions) for modeling the interestingness values, the prac-
tical usability of this measure of interestingness (e.g., unexpectedness or surpris-
ingness) depends on how well the frequency structure of the pattern collection
is modeled. Fortunately the proposed measure of interestingness supports also
exploratory analysis of data by indicating possibly too incorrect models of the
frequency structure by a large binary encoding of the frequencies.

6 Experiments

The ideas of implicit enumeration were experimented with two data sets from
UCI KDD Repository1. The data sets used in the experiments were Internet
Usage data set consisting of 10104 transactions and 10674 attributes, and IPUMS
Census data set consisting of 88443 transactions and 39954 attributes.

Our goal was to examine how large different implicit enumeration represen-
tations are and how they compare to explicit representations. More specifically,
we did two series of experiments.

In the first series of experiments we tried to find out how much we lose
in terms of the number of represented itemsets when using implicit instead of
explicit enumeration of frequent itemsets. The results are shown in Table 1 and
Table 2.

The columns of the tables are as follows. Column σ is the minimum frequency
threshold, column |F(σ, d)| is the number of σ-frequent itemsets, |F(σ, d)−| is the

1 http://kdd.ics.uci.edu

Implicit Enumeration of Patterns 167

Table 1. The number of frequencies that determine frequent itemsets in Internet Usage
data using different representations

F(σ, d)∗ G(σ, d)∗ N (σ, d)∗

σ |F(σ, d)| ∣∣F(σ, d)−
∣∣ |G(σ, d)| ∣∣G(σ, d)−

∣∣ |IG(σ, d)| |N (σ, d)| ∣∣N (σ, d)−
∣∣

0.20 1857 1618 1857 1618 1618 915 1299
0.19 2229 1937 2229 1937 1937 1112 1523
0.18 2668 2226 2668 2226 2226 1313 1818
0.17 3247 2626 3247 2626 2626 1601 2327
0.16 4014 2987 4014 2987 2987 1985 2808
0.15 4984 3451 4984 3451 3451 2445 3473
0.14 6292 4163 6291 4164 4163 3078 4389
0.13 8001 5051 7999 5052 5051 3882 5551
0.12 10477 6337 10473 6338 6337 5071 7187
0.11 13814 7779 13803 7780 7779 6622 9410
0.10 18616 9915 18595 9917 9915 8822 12407
0.09 25730 13265 25687 13270 13265 12073 16720
0.08 36813 18057 36715 18075 18057 16925 23212
0.07 54794 25286 54551 25323 25286 24640 33396
0.06 85493 35958 84874 36041 35958 37449 50142

Table 2. The number of frequencies that determine frequent itemsets in IPUMS Census
data using different representations

F(σ, d)∗ G(σ, d)∗ N (σ, d)∗

σ |F(σ, d)| ∣∣F(σ, d)−
∣∣ |G(σ, d)| ∣∣G(σ, d)−

∣∣ IG(σ, d) |N (σ, d)| ∣∣N (σ, d)−
∣∣

0.40 1518 301 461 313 301 144 275
0.39 1828 340 536 354 340 169 322
0.38 2112 357 608 371 357 188 363
0.37 2500 373 708 387 373 218 409
0.36 2796 396 782 411 396 235 443
0.35 3308 420 902 436 420 259 480
0.34 3976 425 1032 441 425 287 511
0.33 4752 507 1216 525 507 334 598
0.32 5362 533 1348 551 533 367 677
0.31 6648 705 1586 731 705 428 783
0.30 8206 745 1855 771 745 477 933
0.29 9642 804 2118 830 804 531 1084
0.28 11444 899 2401 925 899 587 1243
0.27 13844 916 2771 942 916 642 1378
0.26 17504 1060 3291 1087 1060 741 1615
0.25 20024 1267 3723 1298 1267 840 1783
0.24 23904 1552 4365 1584 1552 975 2090
0.23 31792 1914 5326 1955 1914 1200 2503

number of σ-infrequent itemsets whose allsubsets are σ-frequent, column |G(σ, d)|
is the number of σ-frequent free itemsets, column |G(σ, d)−| is the number of
itemsets that are not σ-frequent free itemsets but whose all subsets are, column

168 T. Mielikäinen

10000

100000

1e+06

1e+07

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

nu
m

be
r

of
 b

its

minimum frequency threshold

gzipped frequent itemsets
gzipped closed frequent itemsets

frequent itemset representation
generator representation

non-derivable itemset representation

1000

10000

100000

1e+06

1e+07

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

nu
m

be
r

of
 b

its

minimum frequency threshold

gzipped frequent itemsets
gzipped closed frequent itemsets

frequent itemset representation
generator representation

non-derivable itemset representation

Fig. 2. The number of bits used in different implicit representations and gzip-
compressed explicit representations of frequent itemsets in Internet Usage data (top)
and IPUMS Census data (bottom)

Implicit Enumeration of Patterns 169

|IG(σ, d)| is the number of minimal σ-infrequent free itemsets, column |N (σ, d)|
is the number of σ-frequent non-derivable itemsets and column |N (σ, d)−| is
the number of σ-infrequent non-derivable itemsets with least upper bounds at
least the minimum frequency threshold and whose all subsets are σ-frequent
non-derivable itemsets. Recall that the number of itemsets in the explicit repre-
sentations (i.e., listing the itemsets and their frequencies) are |F(σ, d)|, |G(σ, d)|+
|IG(σ, d)| and |N (σ, d)|. The number of itemsets in the implicit representations
are |F(σ, d)| + |F(σ, d)−|, |G(σ, d)| + |G(σ, d)−| and |N (σ, d)| + |N (σ, d)−|, for
implicit frequent itemset representations, implicit frequent free itemset represen-
tations and implicit frequent non-derivable itemset representations, respectively.

The number of itemsets needed in the implicit representations seems to differ
from the number of itemsets needed in the explicit representations reasonably
little. As the implicit representations need list only the frequencies and not the
actual patterns in contrary to the explicit representations, this small increase in
the number of patterns needed is even more acceptable.

Second, we wanted to find out how different pruning strategies affect to the
actual sizes of the representations. The number of bits used to represent the
frequencies of the frequent itemsets are determined by Equation 8, Equation 9
and Equation 10 in the implicit frequent itemset representations, in the fre-
quent free representation and the frequent non-derivable itemset representation,
respectively. As baselines we used gzip-compressed frequent itemsets and gzip-
compressed closed frequent itemsets.

The results for both data sets are shown in Figure 2. Thus, the pruning
techniques decrease considerably also the sizes of the binary encodings of the
implicit frequent itemset representations and the implicit representations are
competitive with the explicit representations.

7 Conclusions

In this paper we have described how pattern collections can be represented
by listing the interestingness values of the patterns in some suitable order and
showed how this implicit representation can be constructed in the case of fre-
quent itemsets using the order of increasing itemset cardinality.

This approach seems to be quite competitive compared to other represen-
tation techniques in terms of space consumption, as shown in Section 6. Also,
implicit enumerations offer a complementary viewpoint to pattern collections.

As a side product of this viewpoint we get a natural measure of surprising-
ness based on how well each interestingness value can be predicted from the
interestingness values of previous patterns in the enumeration. This measure
of surprisingness can be applied to individual patterns and whole pattern col-
lections: for the individual patterns it expressed how unexpected the pattern
is compared to other patterns and for the pattern collection it can be used to
evaluate the fitness of our understanding about the relationships between the
patterns.

170 T. Mielikäinen

Furthermore, describing a list of interestingness values of one pattern collec-
tion based on the interestingness values of another pattern collection seems to
have some potential to compare pattern collections, e.g., to detect the changes
in evolving transaction databases.

Although the implicit enumeration of patterns seems to be a promising ap-
proach to represent patterns, there are some interesting open problems:

– How to make use of the proposed measure of surprisingness in concrete cases?
What kind of models on interestingness values would be useful in practice
to gain more insight to pattern collections?

– How the patterns should be ordered in terms of understandability, efficient
queries and the size of the representation when implicitly enumerating them?

– How the implicit and the explicit enumerations should be combined? How
one could move from implicit to explicit representation and vice versa?

Acknowledgments. I wish to thank the anonymous reviewers for their con-
structive comments and illuminating insights.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993. ACM Press (1993) 207–216

2. Goethals, B., Zaki, M.J., eds.: Proceedings of the Workshop on Fre-
quent Itemset Mining Implementations (FIMI-03), Melbourne Florida, USA,
November 19, 2003. Volume 90 of CEUR Workshop Proceedings. (2003)
http://CEUR-WS.org/Vol-90/.

3. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning 50 (2003) 321–354

4. Kurakochi, M., Karypis, G.: Discovering frequent geometric subgraphs. [32] 258–
265

5. Wang, X., Wang, J.T., Shasha, D., Shapiro, B.A., Rigoutsos, I., Zhang, K.: Finding
patterns in three-dimensional graphs: Algorithms and applications to scientific data
mining. IEEE Transactions on Knowledge and Data Engineering 14 (2002) 731–
749

6. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In Getoor,
L., Senator, T.E., Domingos, P., Faloutsos, C., eds.: Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Washington, DC, USA, August 24 - 27, 2003. ACM (2003) 286–295

7. Garofalakis, M., Rastogi, R., Shim, K.: Mining sequential patterns with regular
expression constraints. IEEE Transactions on Knowledge and Data Engineering
14 (2002) 530–552

8. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1 (1997) 259–289

9. Zaki, M.J.: SPADE: An efficient algoritm for mining frequent sequences. Machine
Learning 42 (2001) 31–60

Implicit Enumeration of Patterns 171

10. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In Hand, D., Keim, D., Ng, R., eds.: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, July 23-26, 2002, Edmonton, Alberta, Canada. ACM (2002)

11. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed represen-
tations. In Simoudis, E., Han, J., Fayyad, U.M., eds.: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96).
AAAI Press (1996) 189–194

12. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4
(2003) 69–77

13. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of The ACM 39 (1996) 58–64

14. Mannila, H.: Inductive databases and condensed representations for data mining.
In Maluszynski, J., ed.: Logic Programming, Proceedngs of the 1997 International
Symposium, Port Jefferson, Long Island, N.Y., October 13-16, 1997. MIT Press
(1997) 21–30

15. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering all most specific sentences. ACM Transactions on Database Systems
28 (2003) 140–174

16. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In Beeri, C., Buneman, P., eds.: Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings. Volume 1540 of Lecture Notes in Computer Science. Springer (1999)
398–416

17. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of Boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7 (2003) 5–22

18. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns.
In: Proceedings of the Twenteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California,
USA. ACM (2001)

19. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In Cercone, N., Lin, T.Y., Wu, X., eds.: Proceedings of the 2001
IEEE International Conference on Data Mining, 29 November - 2 December 2001,
San Jose, California, USA. IEEE Computer Society (2001) 305–312

20. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. [33]
71–82

21. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In Elomaa,
T., Mannila, H., Toivonen, H., eds.: Principles of Data Mining and Knowledge
Discovery, 6th European Conference, PKDD 2002, Helsinki, Finland, August 19-
23, 2002, Proceedings. Volume 2431 of Lecture Notes in Artificial Intelligence.
Springer (2002) 74–865

22. Pei, J., Dong, G., Zou, W., Han, J.: On computing condensed pattern bases. [32]
378–385

23. Mielikäinen, T., Mannila, H.: The pattern ordering problem. [33] 327–338
24. Mielikäinen, T.: Chaining patterns. In Grieser, G., Tanaka, Y., Yamamoto, A.,

eds.: Discovery Science, 6th International Conference, DS 2003, Sapporo, Japan,
October 17–19, 2003, Proceedings. Volume 2843 of Lecture Notes in Computer
Science. Springer (2003) 232–243

172 T. Mielikäinen

25. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R., eds.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press (1996) 307–328

26. Hafez, A., Deogun, J., Raghavan, V.V.: The item-set tree: A data structure for
data mining. In Mohania, M.K., Tjoa, A.M., eds.: Data Warehousing and Knowl-
edge Discovery, First International Conference, DaWaK ’99, Florence, Italy, August
30 - September 1, 1999, Proceedings. Volume 1676 of Lecture Notes in Artificial
Intelligence. Springer (1999) 183–192

27. Mielikäinen, T.: An automata approach to pattern collections. In Goethals, B.,
Siebes, A., eds.: Knowledge Discovery in Inductive Databases, 3rd International
Workshop, KDID 2004, Pisa, Italy, September 20, 2004, Revised Papers. Volume
3377 of Lecture Notes in Computer Science. Springer (2005)

28. Mielikäinen, T.: Separating structure from interestingness. In Dai, H., Srikant, R.,
Zhang, C., eds.: Advances in Knowledge Discovery and Data Mining, 8th Pacific-
Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004, Proceedings.
Volume 3056 of Lecture Notes in Artificial Intelligence. Springer (2004) 476–485

29. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhai, L.: Mining frequent
patterns with counting inference. SIGKDD Explorations 2 (2000) 66–75

30. Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Transac-
tions on Information Systems 16 (1998) 256–294

31. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: probabilistic methods
for query approximation on binary transaction data. IEEE Transactions on Data
and Knowledge Engineering 15 (2003) 1409–1421

32. Kumar, V., Tsumoto, S., eds.: Proceedings of the 2002 IEEE International Confer-
ence on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan.
IEEE Computer Society (2002)

33. Lavrac, N., Gamberger, D., Blockeel, H., Todorovski, L., eds.: Knowledge Discovery
in Databases: PKDD 2003, 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-
26, 2003, Proceedings. Volume 2838 of Lecture Notes in Artificial Intelligence.
Springer (2003)

Condensed Representation of EPs and Patterns
Quantified by Frequency-Based Measures

Arnaud Soulet, Bruno Crémilleux, and François Rioult

GREYC, CNRS - UMR 6072, Université de Caen,
Campus Côte de Nacre,

F-14032 Caen Cédex France
{Forename.Surname}@info.unicaen.fr

Abstract. Emerging patterns (EPs) are associations of features whose
frequencies increase significantly from one class to another. They have
been proven useful to build powerful classifiers and to help establishing
diagnosis. Because of the huge search space, mining and representing
EPs is a hard and complex task for large datasets. Thanks to the use
of recent results on condensed representations of frequent closed pat-
terns, we propose here an exact condensed representation of EPs (i.e.,
all EPs and their growth rates). From this condensed representation, we
give a method to provide interesting EPs, in fact those with the highest
growth rates. We call strong emerging patterns (SEPs) these EPs. We
also highlight a property characterizing the jumping emerging patterns.
Experiments quantify the interests of SEPs (smaller number, ability to
extract longer and less frequent patterns) and show their usefulness (in
collaboration with the Philips company, SEPs successfully enabled to
identify the failures of a production chain of silicon plates). These con-
cepts of condensed representation and “strong patterns” with respect to
a measure are generalized to other interestingness measures based on
frequencies.

Keywords: Emerging patterns, condensed representations, closed pat-
terns, characterization of classes, frequency-based measures.

1 Introduction

The characterization of classes and classification are significant fields of research
in data mining and machine learning. Initially introduced in [13], emerging pat-
terns (EPs) are patterns whose frequency strongly varies between two datasets
(i.e., two classes). EPs characterize the classes in a quantitative and qualitative
way. Thanks to their capacity to emphasize the distinctions between classes,
EPs enable to build classifiers or to propose a help for diagnosis. They are at
the origin of varied works and they are also used in the realization of powerful
classifiers [14, 16]. From an applicative point of view, we can quote various works
on the characterization of biochemical properties or medical data [18].

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 173–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 A. Soulet, B. Crémilleux, and F. Rioult

Nevertheless, mining EPs in large datasets remains a challenge because of the
very high number of candidate patterns. The pruning property used by the level-
wise algorithms [20] and often used in data mining cannot be directly applied.
Usual methods use handlings of borders [13] in order to find version spaces.

In this paper, we are interested in the extraction of emerging patterns and
the definition and characterization of useful kinds of emerging patterns. One
originality of our approach is to take advantage of recent progress on the con-
densed representations of patterns and more precisely on closed patterns [22, 5].
By synthesizing sets of patterns and making easier a process in which users can
query data and patterns, condensed representations are an important concept
in inductive databases. A brief overview of the condensed representation based
on closed pattern is given in Section 2.3.

This paper mainly proposes four contributions. Firstly, we define an exact
condensed representation of the emerging patterns for a dataset. Contrary to
the borders approach (Section 2.2) which provides the emerging patterns with
a lower bound of their growth rate, this condensed representation easily enables
to know the exact growth rate for each emerging pattern. Moreover, there are
efficient algorithms to extract this condensed representation. Secondly, we high-
light a new property characterizing a particular kind of emerging patterns, the
jumping emerging patterns which make up an active research topic. Thirdly, we
propose a new kind of emerging patterns, we call them “ strong emerging pat-
terns ” (SEPs): these EPs have the best growth rates and we think that they are
of a great interest. Furthermore, we show that SEPs are easily obtained from
the exact condensed representation of the emerging patterns. This work is also
justified by requests from providers of data. Experiments quantify the interests
of SEPs (smaller number, ability to extract longer and less frequent patterns).
We also give the results achieved by the use of the strong emerging patterns
for characterizing patients with respect to atherosclerosis and for successfully
identifying the failures of a production chain of silicon plates in collaboration
with the Philips company. Lastly, we show that these concepts of condensed rep-
resentation and “strong patterns” with respect to a measure can be generalized
to other interestingness measures based on frequencies.

This paper is an extension of a preliminary work presented in [29]: new contri-
butions are a property characterizing the jumping emerging patterns, the ability
to easily obtain the exact growth rate for each emerging pattern, the proofs of the
properties, in-depth experiments (qualitative results coming from our collabora-
tion with the Philips company, atherosclerosis dataset, influences of the minimal
frequency threshold) and the generalization to other interestingness measures
based on frequencies.

The paper is organized in the following way. Section 2 introduces the context,
the required notations and the works related to this field. Section 3 proposes
a new characterization of the jumping emerging patterns. It defines an exact
condensed representation of the emerging patterns and also the strong emerging
patterns, which are easily achieved from this condensed representation. Section 4
presents the experimental evaluations which quantify the interests of SEPs and

Condensed Representation of EPs and Patterns 175

their successful use within a collaboration with the Philips company. Finally,
Section 5 extends results highlighted in the case of EPs to other measures based
on frequencies.

2 Context and Related Works

2.1 Notations and Definitions

Let D be a dataset (Table 1), which is an excerpt of the data used for the
search for failures in a production chain (cf. Section 4). This table (which is a
simplification of the real problem) is used as an elementary example to present
the concepts throughout this paper.

Each line (or transaction) of Table 1 represents a batch (noted B1, . . . , B8)
described by features (or items) : A, . . . ,E denote the advance of the batch within
the production chain and C1, C2 the class values. D is partitioned here into two
datasets D1 (the right batches) and D2 (the defective batches). The transactions
having item C1 (resp. C2) belong to D1 (resp. D2). A pattern is a set of items
(e.g., {A, B, C}) noted by the string ABC. A transaction t contains the pattern
X if and only if X ⊆ t. Lastly, |D| (as usual |.| denotes the cardinality of a set)
is the number of transactions of D.

The concept of emerging patterns is related to the notion of frequency. The
frequency of a pattern X in a dataset D (noted F(X,D)) is the number of
transactions of D which contain X (for example, F(ABC,D) = 4). X is frequent
if its frequency is at least the frequency threshold fixed by the user. From the
absolute frequency, we can compute the relative frequency which is F(X,D)/|D|.
Unless otherwise indicated, we use in this paper the absolute frequency. Let us
note that by the definition of the partial sets Di associated to the class identifiers
Ci, we have the relation F(X,Di) = F(XCi,D).

Intuitively, an emerging pattern is a pattern whose frequency increases sig-
nificantly from one class to another. The capture of contrast between classes
brought by a pattern is measured by its growth rate. The growth rate of a pat-
tern X from D2 to D1, noted GR1(X), is defined as :

Table 1. Example of a transactional dataset

D
Batch Items

B1 C1 A B C D
B2 C1 A B C D
B3 C1 A B C
B4 C1 A D E
B5 C2 A B C
B6 C2 B C D E
B7 C2 B C E
B8 C2 B E

176 A. Soulet, B. Crémilleux, and F. Rioult

⎧⎨
⎩

0, if F(X,D1) = 0 and F(X,D2) = 0
∞, if F(X,D1) �= 0 and F(X,D2) = 0
|D2|×F(X,D1)
|D1|×F(X,D2)

, otherwise

Thus, the definition of an emerging pattern (EP in summary) is given by :

Definition 1 (Emerging Pattern). Given a threshold ρ > 1, a pattern X is
said to be an emerging pattern from D2 to D1 if GR1(X) ≥ ρ.

Let us give some examples from Table 1. With ρ = 3, A, ABC, and ABCD
are EPs from D2 to D1. Indeed, GR1(A) = 4/1 = 4, GR1(ABC) = 3/1 = 3 and
GR1(ABCD) = 2/0 = ∞. Conversely, BCD is not an EP: GR1(BCD) = 2/1 =
2 (< ρ). When the pattern X is not present in D2 (i.e. F(X,D2) = 0), we get
GR1(X) = ∞ and such a pattern is called jumping emerging pattern (JEP). For
instance, ABCD is a JEP for D1 and BCDE is a JEP for D2. Unless otherwise
indicated, we consider that the growth rate of a pattern X must be higher than 1
in order that X is an EP.

2.2 Related Works

Efficient computation of all EPs in high dimensional datasets remains a chal-
lenge because the number of candidate patterns is exponential according to
the number of items. The naive enumeration of all patterns with their fre-
quencies fails quickly. In addition, the definition of EPs does not provide
anti-monotonous (e.g., BCD is an EP for D1, not BC) constraints to ap-
ply a powerful pruning of the search space for methods stemming from the
framework of level-wise algorithms [20]. Thus, various authors proposed other
ways.

The approach of handling borders, introduced by Dong and al. [13], mines
multiple couples of maximal and minimal borders from the datasets. The interval
described by these two borders corresponds to EPs. Each couple provides an
interval giving a concise description of emerging patterns. Unfortunately, the
computation of the intervals must be repeated very often and for all the Di

and this process does not provide for each EP its growth rate. This technique
is particularly effective for the search of JEPs due to the convexity of their
search space [17]. Nevertheless, Bailey and al. [2] propose a new tree-based data
structure for storing the dataset. Their approach is 2-10 times faster than the
technique of handling borders.

Other approaches exist. Zhang et al. [32] introduce an anti-monotonous con-
straint to be able to apply a level-wise algorithm. But this one eliminates many
EPs and loses the completeness of the search. In a more general way, this problem
can be seen as the search for the patterns checking the conjunction of an anti-
monotonous constraint and a monotonous constraint [12, 11], this work drawing
its origins from version spaces [21].

Condensed Representation of EPs and Patterns 177

2.3 Condensed Representation Based on Closed Patterns

As indicated in the introduction, this paper revisits the search and the char-
acterization of EPs by taking advantage of recent progress on the condensed
representations of patterns. We briefly point out below the main concepts re-
quired to understand the rest of this paper.

A condensed representation of patterns provides a synthesis of large data sets
highlighting the correlations embedded in the data. There is a twofold advan-
tage to use condensed representations. First, such an approach enables powerful
pruning criteria during the extraction which greatly improve the efficiency of
algorithms [5, 22]. Second, the synthesis of the data provided by a condensed
representation is at the core of relevant and multiple uses of patterns (e.g., re-
dundant or informative rules [31], rules with minimal body [9], clustering [15],
classification,. . .), which are key points in many practical applications. There are
several kinds of condensed representations of patterns [22, 5]. The most current
ones are based on closed patterns, free (or key) patterns or δ-free. A general
framework is presented in [7].

For the rest of the paper, we focus on the condensed representation based on
closed patterns. A closed pattern in D is a maximal set of items (with respect to
the set inclusion) shared by a set of transactions. This concept is related to the
lattice theory [3] and the Galois connection. In Table 1, ABC is a closed pattern
because B1, B2, B3 and B5 do not share another item. The notion of closure is
linked to the one of closed pattern.

Definition 2 (Closure). The closure of a pattern X in D is h(X,D) =
⋂{tran−

saction t in D|X ⊆ t}.
An important property on the frequency stems from this definition. An item

A belongs to the closure of X in D if and only if F(XA,D) = F(X,D). The
closure of X is a closed pattern and F(X,D) = F(h(X,D),D). In our example,
h(AB,D) = ABC and F(AB,D) = F(ABC,D). Thus, the set of the closed
patterns is a condensed representation of all patterns because the frequency of
any pattern can be inferred from its closure.

3 Condensed Representation and Strong Emerging
Patterns

This section highlights a new property to characterize jumping emerging patterns
and defines an exact condensed representation of the emerging patterns. Lastly,
it proposes the strong emerging patterns.

3.1 Characterization of JEPs

Let us start by generalizing the definition of EPs to data having more than two
classes. In Section 2.1, we have D2 = D\D1. So, F(X,D2) = F(X,D)−F(X,D1)
(and, similarly, |D2| = |D|− |D1|). So, the generalization of the growth rate (see
its definition in Section 2.1) and thus the definition of EPs, are straightforward.

178 A. Soulet, B. Crémilleux, and F. Rioult

Let D be a dataset partitioned into k parts denoted D1, . . . ,Dk (D =
⋃

iDi).
The items C1, . . . , Ck respectively indicate the membership of a transaction to
a dataset D1, . . . ,Dk. ∀i ∈ {1, . . . , k}, the growth rate of D\Di in Di is:

GRi(X) =
|D| − |Di|
|Di|︸ ︷︷ ︸

noted αi

× F(X,Di)
F(X,D)−F(X,Di)

(1)

We are now able to provide a new characterization of JEPs for data having
any number of classes. An item A belongs to the closure of X in D if and only
if F(XA,D) − F(X,D) = 0 (Definition 2). Then, Property 1 shows how to
characterize JEPs:

Property 1 (Characterization of JEPs Based on Closed Patterns).

X is a JEP of Di ⇐⇒ Ci ∈ h(X,D)

Proof. Ci ∈ h(X,D) ⇐⇒ F(XCi,D) = F(X,D). By definition of Di,
F(X,Di) = F(XCi,D). Then F(X,D) = F(X,Di) and the denominator of
GRi(X) is null (cf. Equation 1) and X is a JEP.

This property is helpful: it enables to easily obtain JEPs from the closures.
Indeed, for each closed pattern XCi, it is enough to check if X is contained in the
condensed representation. If X does not belong to the condensed representation,
it means that its closure is XCi (because XCi is a closed pattern) and X is a
jumping emerging pattern of Di.

3.2 Exact Condensed Representation of Emerging Patterns

Let us move now how to get the growth rate of any pattern X. Equation 1
shows that it is enough to compute F(X,D) and F(X,Di). These frequencies
can be obtained from the condensed representation of frequent closed patterns.
Indeed, F(X,D) = F(h(X,D),D) (closure property) and by definition of the
partial bases Di, F(X,Di) = F(XCi,D) = F(h(XCi,D),D). Unfortunately,
these relations require the computation of two closures (h(X,D) and h(XCi,D)),
which it is not efficient. The following properties solve this disadvantage:

Property 2. Let X be a pattern and Di a dataset, F(X,Di) = F(h(X,D),Di).

Proof. The properties of the closure operator ensure that for any transaction t,
X ⊆ t ⇐⇒ h(X,D) ⊆ t. In particular, the transactions of Di containing X are
identical to those containing h(X,D) and we have the equality of the frequencies.

It is now simple to show that the growth rate of every pattern X is obtained
thanks to the only knowledge of the growth rate of h(X,D):

Property 3. Let X be a pattern, we have GRi(X) = GRi(h(X,D)).

Condensed Representation of EPs and Patterns 179

Proof. Let X be a pattern. By replacing F(X,D) with F(h(X,D),D) and
F(X,Di) with F(h(X,D),Di) in Equation 1, we immediately recognize the
growth rate of h(X,D).

For instance, h(AB,D) = ABC and GR1(AB) = GR1(ABC) = 3. The
closed patterns with their growth rates are enough to synthesize the whole set of
EPs with their growth rates. So, we obtain an exact condensed representation of
the EPs (i.e. the growth rate of each emerging pattern is exactly known). Let us
recall that the borders technique (cf. Section 2.2) only gives a lower bound of the
growth rate. This property is significant because the number of closed patterns
is lower (and, in general, much lower) than that of all patterns [6]. In practice,
h(X,D) is directly obtained by the minimal (with respect to the set inclusion)
closed pattern containing X of the condensed representation.

3.3 Strong Emerging Patterns

The number of emerging patterns of a dataset can be crippling for their use.
In practice, it is judicious to keep only the most frequent EPs having the best
growth rates. But thoughtlessly raising these two thresholds may be problematic.
On the one hand, if the minimal growth rate threshold is too high, the EPs found
tend to be too specific (i.e. too long). On the other hand, if the minimal frequency
threshold is too high, EPs have a too low growth rate.

We define here the strong emerging patterns which are the patterns having
the best possible growth rates. They are a trade-off between the frequency and
the growth rate.

Definition 3 (Strong Emerging Pattern). A strong emerging pattern X
(SEP in summary) for Di is an emerging pattern such that XCi is a closed
pattern in Di.

A great interest of SEPs concerns their growth rate: the following property
indicates that the SEPs have the best possible growth rates.

Property 4 (SEPs: EPs with Maximum Growth Rate). Let X be a pat-
tern not containing the item Ci. Then the SEP coming from h(X,Di) has a
better growth rate than X, i.e. one has GRi(X) ≤ GRi(h(X,Di)\{Ci}).

Proof. Let Y = h(X,Di)\{Ci}. Thanks to the closure property, F(X,Di) =
F(Y,Di). We can then write (Equation 1) GRi(Y) = αi × F(X,Di)

F(Y,D)−F(X,Di)
. The

extensivity of the closure operator makes it possible to write X ⊆ h(X,Di) and
Ci �∈ X thus X ⊆ Y and F(X,D) ≥ F(Y,D) due to the property of frequency,
which shows that GRi(X) ≤ GRi(Y).

Let us illustrate Property 4 on the elementary example. The pattern BC
is not a SEP for class 1 (because h(BC,D1)\{C1} = ABC), its growth rate
is 1, one has GR1(BC) ≤ GR1(ABC) = 3 and we notice that F(BC,D1) =
F(ABC,D1). Let us note that Property 4 enables to highlight an alternative
definition of SEPs: an emerging pattern X is said to be a SEP in Di when

180 A. Soulet, B. Crémilleux, and F. Rioult

GRi(X) > GRi(Y) for all supersets Y of X such that F(X,Di) = F(Y,Di).
This new definition is based on two key points. First, the condition on frequency
(i.e. F(X,Di) = F(Y,Di)) indicates that we choose a particular pattern for each
equivalence class of frequency. Second, this pattern must maximize the growth
rate in this equivalence class and Property 4 shows that this pattern corresponds
to the closed one.

As for EPs, the property of “being a SEP” is neither monotonous (e.g., B is a
SEP for D2, not BC), nor convertible [23] because no ordering relation over items
allows to get a pruning criterion for prefixes. Nevertheless, SEPs are efficiently
mined thanks to the properties of the condensed representations (see Section 2.3)
and the simple post-processing step to get them. The second advantage of the
strong emerging patterns is that their growth rates are immediately known (cf.
Property 5). We start by giving Lemma 1 which facilitates the understanding of
this property.

Lemma 1. If XCi is closed in Di, then XCi is closed in D.

Proof. No transaction of D\Di contains item Ci. If XCi is closed in Di, the only
transactions ofD containing XCi are inDi and h(XCi,D) = XCi, therefore XCi

is closed in D.

Property 5 indicates that the growth rate of SEPs is immediately obtained.

Property 5 (SEPs: Computing Their Growth Rate). If X is a strong emerg-
ing pattern for Di, then GRi(X) can be obtained directly with the frequencies of
the condensed representation based on the frequent closed patterns of D.

Proof. Let X be a SEP, therefore XCi is closed in Di (Definition 3). To calculate
GRi(X), it is necessary to calculate F(X,Di) and F(X,D). By definition of Di,
F(X,Di) = F(XCi,D) and Lemma 1 ensures that XCi is closed in D, thus, its
frequency is provided by the condensed representation of the closed patterns of
D. To calculate F(X,D), two cases arise: if X is closed in D, its frequency is
directly available. If not, XCi being closed in D, Property 1 indicates that X is
a JEP: its growth rate is infinite.

SEPs are computed thanks to the condensed representation of closed patterns
in D by filtering the closed patterns containing a class value Ci. For each of them,
we simply deduce GRi(X) by considering the pattern X as indicated in the proof
above.

Compared to EPs, Properties 4 and 5 show two meaningful advantages of
SEPs: on the one hand, they have the best possible growth rates, on the other
hand, they are easy to discover from the condensed representation of frequent
closed patterns of D (Lemma 1 ensures that we only have to filter frequent closed
patterns containing Ci). Let us note that the EPs based on X and h(X,Di) have
the same frequency, thus they have the same quality according to this criterion.
However, the SEP coming from h(X,Di) has a stronger (i.e. higher) growth rate
and thus offers a better compromise between frequency and growth rate.

Condensed Representation of EPs and Patterns 181

4 Experiments

Experiments provide both quantitative and qualitative results. Quantitative re-
sults address the number of SEPs with regard to other kinds of EPs, according
to the frequency threshold, etc. and qualitative results deal with the successful
use of SEPs to identify the failures of a production chain of silicon plates within
a collaboration with the Philips company. Even if some overall results are ex-
pected (for instance, the number of SEPs can be only smaller than the number
of EPs), we think that it is interesting to quantify them (following our example
on the number of SEPs versus those of EPs, is it a drastic reduction or not?).

We use the MVminer prototype [26] to produce the condensed representa-
tion of frequent closed patterns which enables to provide SEPs (see the previous
section). In order to compare quantitative results achieved by SEPs with regard
to EPs, it is necessary to obtain EPs. For that, we used an Apriori-like proto-
type, which computes frequent patterns and selects those having a growth rate
greater than a threshold (let us recall that the use of borders does not allow to
get the exact growth rate of each pattern [13], so we cannot compare straightfor-
wardly this approach with results stemming from the exact condensed represen-
tation of EPs). We did not perform run-time experiments about the efficiency
of the extraction of the condensed representation of closed patterns because this
efficiency has been shown by several authors [5, 22, 24].

4.1 Data Overview

Experiments were carried out on two real datasets. This first dataset Dathero

comes from the STULONG project1. These data address a twenty-year longitu-
dinal study of the risk factors of atherosclerosis in a population of 1417 men in
former Czechoslovakia. We are interested in characterizing patients according to
whether they die or not due to atherosclerosis. From this available data base,
we prepare a dataset constituted of 748 rows (divided into 2 classes) described
by 119 items (details are in [10]).

The second dataset DPhilips comes from a collaboration with the Philips
company. The industrial aim is to identify mistaken tools in a silicon plate pro-
duction chain. Data are composed of batches, a batch gathers several silicon
plates. Briefly speaking, a batch is described by the equipment used at each
stage of the flow-chart which is followed during the production. The quality test
leads to three quasi-homogeneous classes corresponding to three quality levels.
Finally, the characterization is performed on a dataset made up of 44 items (i.e.
stage/equipment) and comprising 84 lines (i.e. 84 batches).

4.2 Quantitative Results About SEPs Versus Other Kinds of EPs

Numbers of EPs, Closed EPs and SEPs. We compare here the numbers of
EPs, closed EPs (which stemmed from closed patterns) and SEPs. The number
of closed EPs is a measure of the size of the condensed representation. Figure 1

1 Euromise data, http://lisp.vse.cz/challenge/ecmlpkdd2003/

182 A. Soulet, B. Crémilleux, and F. Rioult

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 p

at
te

rn
s

Length of patterns

ρ= 1, Atherosclerosis dataset

EPs
Closed EPs

SEPs

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 p

at
te

rn
s

Length of patterns

ρ= ∞, Atherosclerosis dataset

EPs
Closed EPs

SEPs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12

N
um

be
r

of
 p

at
te

rn
s

Length of patterns

ρ= 1, Philips dataset

EPs
Closed EPs

SEPs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12

N
um

be
r

of
 p

at
te

rn
s

Length of patterns

ρ= ∞, Philips dataset

EPs
Closed EPs

SEPs

Fig. 1. Comparison between the different kinds of emerging patterns

depicts the distributions of EPs according to the length of patterns for a minimal
frequency threshold of 4.0% in Dathero and 1.2% in DPhilips. Two threshold
values of the minimal growth rate (1 and ∞) are used. This figure shows that
the number of EPs is very high compared to the number of closed EPs or SEPs. In
DPhilips, this disproportion does not decrease in spite of the rise of the minimal
growth rate. These too large numbers of EPs cannot be presented to an expert
for his analysis task.

Influences of the Minimal Frequency Threshold. Let us see now the role
of the minimal frequency threshold. Figure 2 compares the number of EPs with a
minimal growth rate of 1 according to the minimal frequency thresholds. We see
that the numbers of closed EPs and SEPs increase less quickly than the number
of EPs when the frequency decreases. It means that the search for SEPs can be
carried out with a smaller minimum frequency. In other words, as the number of
SEPs and the size of the exact condensed representation are small compared to
the number of EPs, it is possible to examine longer and less frequent patterns.

Figure 3 indicates the variations of the number of EPs, closed EPs and SEPs
according to the length of patterns on Dathero (the minimal frequency threshold
is 2.3%). We note that the number of SEPs and the size of the exact condensed
representation of the EPs increase less quickly when the minimal frequency de-
creases. For searching long emerging patterns, the combinatory explosion is con-

Condensed Representation of EPs and Patterns 183

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 2 4 6 8 10 12 14 16

N
um

be
r

of
 p

at
te

rn
s

Minimal relative frequency (%)

ρ= 1, Atherosclerosis dataset

EPs
Closed EPs

SEPs

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 p

at
te

rn
s

Minimal relative frequency (%)

ρ= 1, Philips datset

EPs
Closed EPs

SEPs

Fig. 2. Number of patterns according to the frequency threshold

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1 2 3 4 5 6 7 8

N
um

be
r

of
 p

at
te

rn
s

Length of patterns

ρ= 1

EPs
Closed EPs

SEPs

Fig. 3. Number of patterns according to their length (Dathero)

trolled in the case of the exact condensed representation of the EPs and the
SEPs, but the extraction of EPs fails for patterns longer than 6 items. Again, it
allows to mine less frequent and longer patterns.

4.3 Results on Applications

Let us say a few words on the applicative results brought by these experiments.
OnDathero, we have proposed SEPs to distinguish the patients who die or not due
to atherosclerosis. Experiments highlighted SEPs with a quite high growth rate
and frequency, and physicians are interested in continuing this work. Further-
more, experts have a strong interest in the quantification of the results (growth
rate, frequency).

In our collaboration with Philips (dataset DPhilips), experts were the most
interested by the confrontation of SEPs having the strongest growth rates and a
length equals 1 or 2. Table 2 indicates the most useful SEPs. There is no reliable
characteristic SEP of length 1. For instance, the pattern E=727 has a growth
rate close to 1 and it is present both in Low and High. On the contrary, SEPs
of length 2 appeared relevant. The contrast between the pattern E=727 A=284

184 A. Soulet, B. Crémilleux, and F. Rioult

Table 2. Examples of strong emerging patterns

SEPs with a length of 1
Class Pattern GR Frequency
Low E=727 1.01 100% (45)
Medium F=232 1.03 100% (37)
High E=727 1.01 100% (45)

SEPs with a length of 2 and GR > 1.5
Class Pattern GR Frequency
Low E=727 A=284 3.64 75.6 % (34)
Medium I=504 F=232 1.84 91.9 % (34)
Medium L=490 F=232 1.62 54.0 % (20)
High E=727 B=288 2.92 71.1 % (32)
High E=727 A=222 2.33 91.1 % (41)

(for Low) and the pattern E=727 A=222 (for High) enabled to suspect a problem
on the stage A (since E=727 is not a discriminant item). Moreover, the stage A
comprises only two kinds of equipment (the 222 and the 284). This result tends
to show the need for modifying the adjustments of equipment 284 in order that
they are similar to those of the equipment 222. After talks with the experts, they
have confirmed that the stage suspected by the SEPs was the real cause of the
failures (an equipment was badly tuned). This experiment shows the practical
contribution of SEPs on real-world data. In other contexts [10], longer SEPs
were proved useful to establish diagnostic and the brute force did not allow to
obtain these patterns.

Let us recall that SEPs have the advantage of giving a precise growth rate
contrary to EPs which would be found by handlings of borders. This quantifica-
tion is useful at the same time for the selection of EPs and the judgment of the
experts. Lastly, thanks to their fewer number, they provide a more understanding
characterization of the data than ordinary EPs.

5 Generalization to Frequency-Based Measures

In this section, we generalize the concepts of exact condensed representations and
“strong patterns” with respect to other usual interestingness measures based on
frequencies. As for the growth rate, which can be seen as a particular measure,
the closure operator provides good properties to extend these concepts.

5.1 Exact Condensed Representation of a Frequency-Based
Measure

We consider various interestingness measures based on frequencies proposed in
statistics, machine learning and data mining. Metrics such as support, confi-
dence, lift, correlation and collective strength are useful to evaluate the quality
of classification rules X → Ci [27, 8, 28, 1, 19].

Condensed Representation of EPs and Patterns 185

Let us define a frequency-based measure Mi which enables to estimate the
quality of the premise of the rule X → Ci to characterize the class i. For instance,
such a measure can be the growth rate. More formally:

Definition 4 (Frequency-Based Measure). Let D be a dataset partitioned
into k parts denoted D1, . . . ,Dk, a frequency-based measure Mi to characterize Di

is a function of frequencies F(X,D1), . . . ,F(X,Dk) i.e. Mi(X) = F (F(X,D1),
. . . ,F(X,Dk)).

A frequency-based measure is limited to a combination of frequencies of Di.
In particular, such a measure cannot contain other parameters (e.g., the length of
a pattern). Some frequency-based measures are indicated in Table 3. Notice that
all these measures are expressed in term of frequencies while the literature about
interestingness measures often writes these measures by using probabilities (e.g.,
P (A|Ci) corresponding to F(X,Di)/|Di|). Some measures (e.g., lift, J-Measure)
use frequencies non restricted to datasets D1, . . . ,Dk but these frequencies can
be computed from F(X,D1), . . . ,F(X,Dk). For example, the frequency F(X,D)
corresponds to

∑k
j=1 F(X,Dj). Thus, these measures respect Definition 4.

As for the emerging patterns, we can know the value of a frequency-based
measure on any pattern X from its closure in D:

Theorem 1. Let X be a pattern, we have Mi(X) = Mi(h(X,D)).

Proof. Let X be a pattern. For each i, Property 2 allows to replace F(X,Di) by
F(h(X,D),Di). Mi(X) = F (F(X,D1), . . . ,F(X,Dk)) = F (F(h(X,D),D1), . . . ,
F(h(X,D),Dk)) = Mi(h(X,D)).

For instance, the closure of AB in D is ABC and we have lift1(AB) =
lift1(ABC) = 3/2. In the same way, h(CDE,D) = BCDE and L2(CDE) =
L2(BCDE) = 0.529 with k = 2.

The closed patterns with their measure Mi are enough to synthesize the whole
set of patterns according to Mi. In practice, the number of closed patterns is
lower (and often, much lower) than that of all patterns [4]. Thus, the closed
patterns with their measure Mi are an exact condensed representation of the
measure Mi.

5.2 Strong Frequency-Based Measure

In large datasets, the number of a priori interestingness patterns satisfying a
given threshold for a measure Mi can be too huge for their use. As for the SEPs,
the notion of strength can be extended to select the patterns which maximalize
a measure Mi.

Definition 5 (Strong Frequency-Based Measure). A frequency-based mea-
sure Mi which decreases with F(X,D), when F(X,Di) remains unchanged, is a
strong frequency-based measure.

For instance, the lift is |D|×F(X,Di)
|Di|×F(X,D) . When F(X,Di) remains unchanged and

F(X,D) increases, the lift decreases because the denominator increases. Thus,

186 A. Soulet, B. Crémilleux, and F. Rioult

Table 3. Examples of frequency-based measures to characterize Di

Frequency-based measure Formula Strong P3

J-Measure (J) [28] F(X,Di)
|D| × log(F(X,Di)×D

|Di|×F(X,D))
+F(X,D\Di)

|D| × log(F(X,D\Di)×D
F(X,D)×|D\Di|) no no

Support [1] F(X, Di)/|D| yes no

Confidence [1] F(X, Di)/F(X, D) yes no

Sensitivity F(X, Di)/|Di| yes no

Success rate
F(X,Di)

|D| + |D\Di|−F(X,D\Di)
|D| yes yes

Specificity
|D\Di|−F(X,D\Di)

|D| yes yes

Piatetsky-Shapiro’s (PS) [25]
F(X,Di)

|D| − F(X,D)
|D| × |Di|

|D| yes yes

Lift [19]
|D|×F(X,Di)
|Di|×F(X,D) yes yes

Odds ratio (α)
F(X,Di)×(|D\Di|−F(X,D\Di))

(F(X,D)−F(X,Di))×(|Di|−F(X,Di))
yes yes

Laplace (L) [8]
F(X,Di)/|D|+1
F(X,D)/|D|+k

with k > 1 yes yes

Growth rate (GR) [27]
|D|−|Di|

|Di| × F(X,Di)
F(X,D)−F(X,Di)

yes yes

the lift is a strong frequency-based measure. In the same way, for the growth rate
(Equation 1), when F(X,D) increases and F(X,Di) is unchanged, the numerator
is constant and the denominator increases. So, the growth rate decreases and it
is also a strong frequency-based measure.

We link now Definition 5 and the framework defining a good measure given by
Piatetsky-Shapiro [25]. The latter has proposed three key properties which have
to be satisfied to get a good measure. On a formal point of view, Definition 5 is
almost similar to the third property P3 given by Piatetsky-Shapiro: Mi mono-
tonically decreases with P (X) when the rest of the parameters (i.e. P (X, Ci) and
P (Ci)) remain unchanged. Indeed, we can observe that P (X) = F(X,D)/|D|,
P (X, Ci) = F(X,Di)/|D| and P (Ci) = |Di|/|D|. In comparison with Definition
5, the only slight difference is that Mi must strictly decrease when F(X,D) in-
creases whereas, in our definition, Mi may remain unchanged. In practice, most
of usual measures are strong frequency-based measure because most of them
check the property P3. A survey [30] is carried out on the property P3 about
twenty one interestingness measures. Table 3 gives, for several measures, these
ones satisfying or not Definition 5 and property P3.

Condensed Representation of EPs and Patterns 187

Theorem 2. Let Mi be a strong frequency-based measure and X be a pattern,
we have Mi(X) ≤ Mi(h(X,Di)\{Ci}). h(X,Di)\{Ci} is called a strong pattern
in class i.

Proof. Let Mi be a strong measure of frequencies and X be a pattern. If we
note Y = h(X,Di)\{Ci}, X and Y have the same frequency in dataset Di

(property of the closure operator) i.e. F(X,Di) = F(Y,Di). As X ⊆ Y , we
obtain that F(X,D) ≥ F(Y,D). Thus, Definition 5 allows to conclude that
Mi(X) ≤ Mi(Y).

Let us illustrate Theorem 2 on the running example. The pattern CD is not
a strong pattern for class 1 (because h(CD,D1)\{C1} = ABCD), its Piatetsky-
Shapiro’s measure is 0.0625 and one has PS1(CD) ≤ PS1(ABCD) = 0.125 as
well.

The pattern X and its corresponding strong pattern h(X,Di)\{Ci} have the
same frequency in dataset Di and the strong pattern coming from X has an
higher value of the measure. Thus, the strong patterns are a good choice to
reduce the number of patterns and preserve the best patterns with respect to
the measure.

Let us note that as for the SEPs, only F(X,Di) and F(X,D) are necessary
to compute any measure Mi. The same filtering proposed in Section 3.3 can
be applied to efficiently mine strong patterns with respect to Mi thanks to the
condensed representation of frequent closed patterns.

6 Conclusion

Based on recent results in condensed representations, we have revisited the field
of emerging patterns. We have defined an exact condensed representation of the
emerging patterns and a new characterization of the jumping emerging patterns.
We have proposed a new kind of emerging patterns, the strong emerging patterns
which are the EPs with the highest growth rates. We have provided an efficient
method to extract SEPs from the exact condensed representation of EPs.

In addition to the simplicity of their extraction, this approach produces only
few SEPs which are particularly useful for helping to diagnosis. So, it is easier
to use SEPs than search relevant EPs among a large number of EPs. Dealing
with our collaboration with the Philips company, SEPs enabled to successfully
identify the failures of a production chain of silicon plates. These promising
results encourage the use of SEPs in many practical domains.

Finally, we have extended the main ideas to frequency-based measures. We
have proven that any frequency-based measure can be exactly and concisely
represented in the condensed representation of the closed patterns. This result
stems from the properties of the closure operator. As for the SEPs, the concept
of strength allows to select less patterns, called strong patterns, which maximal-
ize most of the interestingness measures. Further work is the use of the exact
condensed representation and strong patterns for classification tasks.

188 A. Soulet, B. Crémilleux, and F. Rioult

Acknowledgements. The authors wish to thank the Philips company and in
particular,G.Ferruforhavingprovideddataandmanyvaluablecomments.F.Rioult
is supported by the IRM department (University Hospital of Caen France) and
the “Comité de la Ligue contre le Cancer de la Manche” and the “Conseil Régional
de Basse-Normandie”. This work has been partially funded by the AS “Discovery
Challenge” supported by the French research organism (CNRS).

References

[1] R. Agrawal, T. Imielinsky, and A Swami. Mining associations rules between sets
of items in large databases. In In Proceedings of the ACM SIGMOD’93, pages
207–216, 1993.

[2] J. Bailey, T. Manoukian, and K. Ramamohanarao. Fast algorithms for mining
emerging patterns. In Sixth European Conference on Principles Data Mining and
Knowledge Discovery, PKDD’02, pages 39–50, Helsinki, Finland, 2002. Springer.

[3] G. Birkhoff. Lattices theory. American Mathematical Society, vol. 25, 1967.
[4] E. Boros, V.r Gurvich, L. Khachiyan, and K. Makino. On the complexity of gener-

ating maximal frequent and minimal infrequent sets. In Symposium on Theoretical
Aspects of Computer Science, pages 133–141, 2002.

[5] J. F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representa-
tion of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5–22, 2003. Kluwer Academics Publishers.

[6] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In T. Elo-
maa, H. Mannila, and H. Toivonen, editors, proceedings of the 6th European Con-
ference on Principles of Data Mining and Knowledge Discovery (PKDD’02), pages
74–85. Springer, 2002.

[7] T. Calders and B. Goethals. Minimal k-free representations of frequent sets.
In In proceedings of the 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’03), pages 71–82. Springer, 2003.

[8] P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proc. Fifth European Working Session on Learning, pages 151–163, Berlin, 1991.
Springer.

[9] B. Crémilleux and J. F. Boulicaut. Simplest rules characterizing classes generated
by delta-free sets. In 22nd Int. Conf. on Knowledge Based Systems and Applied
Artificial Intelligence, pages 33–46, Cambridge, UK, December 2002.

[10] B. Crémilleux, A. Soulet, and F. Rioult. Mining the strongest emerging patterns
characterizing patients affected by diseases due to atherosclerosis. In proceedings
of the workshop Discovery Challenge, PKDD’03, pages 59–70, 2003.

[11] L. De Raedt, M. Jäger, S. D. Lee, and H. Mannila. A theory of inductive query
answering. In proceedings of the IEEE Conference on Data Mining, pages 123–130,
Maebashi, Japan.

[12] L. De Raedt and S. Kramer. The levelwise version space algorithm and its appli-
cation to molecular fragment finding. In IJCAI, pages 853–862, 2001.

[13] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Knowledge Discovery and Data Mining, pages 43–52, 1999.

[14] G. Dong, X. Zhang, W. Wong, and J. Li. CAEP: Classification by aggregating
emerging patterns. In Discovery Science, pages 30–42, 1999.

[15] E-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on asso-
ciation rule hypergraphs. In proceedings of the workshop on Research Issues on
Data Mining And Knowledge Discovery, SIGMOD 97, 1997.

Condensed Representation of EPs and Patterns 189

[16] J. Li, G. Dong, and K. Ramamohanarao. Making use of the most expressive jump-
ing emerging patterns for classification. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 220–232. Morgan Kaufmann, San Francisco,
CA, 2000.

[17] J. Li and K. Ramamohanarao. The space of jumping emerging patterns and
its incremental maintenance algorithms. In Proc. 17th International Conf. on
Machine Learning, pages 551–558. Morgan Kaufmann, San Francisco, 2000.

[18] J. Li and L. Wong. Emerging patterns and gene expression data. In Genome
Informatics 12, pages 3–13, 2001.

[19] International Business Machines. IBM intelligent miner, user’s guide, version 1,
release 1, 1996.

[20] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[21] T. Mitchell. Generalization as search. Artificial Intelligence, vol. 18, pages 203–
226, 1980.

[22] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. Lecture Notes in Computer Science, 1540:398–416,
1999.

[23] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with con-
vertible constraints. In ICDE, pages 433–442, 2001.

[24] J. Pei, J. Han, and Mao R. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pages 21–30, 2000.

[25] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases,
pages 229–248, Cambridge, MA, 1991. AAAI/MIT Press.

[26] F. Rioult and B. Crémilleux. Condensed representations in presence of missing
values. In 5th International Conference on Intelligent Data Analysis (IDA’03),
2003.

[27] M. Sebag and M Schoenauer. Generation of rules with certainty and confidence
factors from incomplete and incoherent learning bases. In G. Piatetsky-Shapiro
and W. Frawley, editors, in proceedings pf the European Knowledge Acquisition
Workshop, EKAW’88, 1988.

[28] P. Smyth and R. M. Goodman. Rule induction using information theory. In
G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases,
pages 159–176, Cambridge, MA, 1991. AAAI/MIT Press.

[29] A. Soulet, B. Crémilleux, and F. Rioult. Condensed representation of emerg-
ing patterns. In 8th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Lecture Notes in Computer Science, pages 127–132, Sydney, 2004.

[30] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure
for association patterns. In In proceedings The Eighth ACM Special Interest Group
on Knowledge Discovery in Data and Data Mining (SIGKDD’02), Edmonton,
Alberta, Canada, 2002.

[31] M. Zaki. Generating non-redundant association rules. In In proceedings The 6th
ACM Special Interest Group on Knowledge Discovery in Data and Data Mining
(SIGKDD’00), pages 34–43, 2000.

[32] X. Zhang, G. Dong, and K. Ramamohanarao. Exploring constraints to efficiently
mine emerging patterns from large high-dimensional datasets. In Knowledge Dis-
covery and Data Mining, pages 310–314, 2000.

Author Index

Antunes, Cláudia 11

Besson, Jérémy 33
Boulicaut, Jean-François 33

Calders, Toon 46
Crémilleux, Bruno 173

Dexters, Nele 46
De Raedt, Luc 108
Dillon, Tharam 66

Feng, Ling 66

Jeudy, Baptiste 89

Lee, Sau Dan 108

Mielikäinen, Taneli 130, 150

Oliveira, Arlindo L. 11

Rioult, François 89, 173
Robardet, Céline 33

Sarawagi, Sunita 1
Soulet, Arnaud 173

	Frontmatter
	Invited Paper
	Models and Indices for Integrating Unstructured Data with a Relational Database

	Contributed Papers
	Constraint Relaxations for Discovering Unknown Sequential Patterns
	Mining Formal Concepts with a Bounded Number of Exceptions from Transactional Data
	Theoretical Bounds on the Size of Condensed Representations
	Mining Interesting XML-Enabled Association Rules with Templates
	Database Transposition for Constrained (Closed) Pattern Mining
	An Efficient Algorithm for Mining String Databases Under Constraints
	An Automata Approach to Pattern Collections
	Implicit Enumeration of Patterns
	Condensed Representation of EPs and Patterns Quantified by Frequency-Based Measures

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

